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Molecular connectivity indices are the most widely used topological

indices in QSAR and QSPR studies. In this paper, the ability of these

indices for prediction of electrophoretic mobility of a diverse set of

analytes is investigated. The proposed single parameter models were

able to predict the mobilities well. Main advantages of the proposed

method are: (1) its simplicity, (2) applicability to a wide range of acidic,

basic and neutral analytes and (3) applicability to represent the migration

behaviours for different electrophoresis methods such as MEKC and

non-aqueous capillary electrophoresis.
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INTRODUCTION

Capillary electrophoresis (CE) is a separation technique which provides many

advantageous including high resolution, good efficiency, availability of several

separation modes, rapid analyses and small consumption of both sample and

solvent in comparison with other analytical methods like HPLC. The electrophoretic

mobility is the most important parameter, governing the separation of analytes in

capillary electrophoresis and any attempt to predict the mobility of an analyte could

provide useful information for the analyst to develop a new separation method

using capillary electrophoresis. A number of papers has been published dealing

with mobility modeling in capillary electrophoresis using different independent

variables1-8. The aim of this communication is to present a simple quantitative

relationship between the electrophoretic mobility of analytes and connectivity indices

computed by Dragon software, as independent variables. The accuracy of the proposed

model is evaluated using collected data sets by computing mean percentage deviation

(MPD) of the calculated mobilities from experimental values.
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The most widely used topological indices are molecular connectivity indices

introduced by Randic and developed extensively by Kier and Hall9. The molecular

connectivity indices can encode the structural features such as size, branching, un

saturation, heteroatom content and molecular cyclicity. These indices have been

used successfully to correlate the structures of molecules with their physical, chemi-

cal or biological properties. Kier and Hall in a series of papers10-12 showed that there

is a significant linear correlation between a Randic connectivity index and physico-

chemical properties such as solvent cavity surface area, molecular polarizability,

water solubility, boiling point and partition coefficient of a number of hydrocarbons.

After two decades they published another paper and analyzed the molecular connec-

tivity indices for the information in bond terms and concluded that the connectivity

indices are indeed non-empirical structure descriptors which are rich in information.

The authors discussed these indices as bimolecular encounter accessibility in a

milieu9. These findings beside the applications of these simple indices for about

30 years in different physicochemical and biological areas13-16 encouraged us to use

them in mobility prediction of organic molecules, which is the best example of

interaction of a molecule in a milieu.

A review of papers showed that there is just one publication which used these

parameters in mobility prediction. Liang and co-workers17 developed 23 different

three constant MLR models using connectivity indices in order to represent the

mobility of 13 flavonoids with correlation coefficients ranging from 0.93-0.99 and

relative standard error of about 10 %. In addition to a relatively high error value,

there is a dilemma of choosing a model among 23 presented models for practical

uses.

Other QSPR models are developed until now are relayed on other calculated

structural parameters. A summary of these models are included in Table-1. A linear

model representing the electrophoretic mobility of different data sets using a single

algorithm based on structural features of the analytes was presented as18:

ln µ = K0 + K1PQ + K2V
2/3 + K3TE + K4∆Hf + K5MR (1)

where µ is the effective electrophoretic mobility, PQ is partial charge, V2/3 denotes

surface area, TE stands for total energy, ∆Hf represents heat of formation, MR is

molecular refractivity and K0-K5 are the model constants which are calculated

using a least squares analyses. A set of 115 carboxylic acids' mobilities were

predicted using different linear MLR and various non-linear (ANN, RBFNN, CART-

ANFIS) methods and the researchers concluded that non-linear methods are better

than linear ones7. The mechanistic methods are also reported19. The details of the

summarized methods and utilized descriptors could be found in literature. A brief

comparison between the accuracy of the proposed model with previous models is

presented in this work.

4728  Soltani et al. Asian J. Chem.



TABLE-1 
SUMMARY OF PUBLISHED ELECTROPHORETIC  

MOBILITY PREDICTION METHODS 

Data set 
No. of data 
points (Na) 

Modeling method MPD Reference 

Sulfonamides (cationic, anionic) 13 
MLR 
ANN 

9.3-1.9 
1.3-0.5 

1 

Flavonoides 13 MLR 10.0 17 

Pyridine derivatives 31 
ANN 
MLR 

0.8 
1.4 

20 

Ammonium derivatives 56 ANN 3.7 21 

β-Blockers 
Benzoates 
NSAIDs 
Sulfonamides 
Amines 

10 
26 
11 
13 
18 

MLR 

5.8 
7.0 
1.5 
2.7 
7.2 

18 

Carboxylic acid 115 
HM 

RBFNN 
11.7 
5.0 

4 

Carboxylic acid 
Aromatic sulfonic acid 

115 
21 

Mechanistic 
equation 

7.5 
4.0 

19 

Carboxylic acid 115 
CART-ANFIS 

Variable Ranking 
4.8 

28.4 
7 

Monoamines 34 Non linear MLR 4.1 22 

Flavonoids 13 
MLR 

RBFNN 
7.2 
2.2 

3 

 

EXPERIMENTAL

Electrophoretic mobilities of different sets of analytes collected from the

literature (Table-2), were used to check the applicability of the proposed model.

The molecular connectivity indices used in this work were computed using Dragon

5.4 software. The molecular structures of the analytes were drawn using HyperChem

software and the structural data files were transformed into the Dragon 5.4 software.

The software computes 30 different connectivity indices. Stepwise regression analyses

were used as a parameter selection method and the selected parameters were used

to build single parameter models.

TABLE-2 
DETAILS OF COLLECTED DATA SETS FROM LITERATURE 

Data set No. of data points (Na) Reference 

β-Blockers 10 23, 24 

NSAIDs 11 25 

Sulfonamides 13 26 

Amines 18 27 

Aromatic sulfonic acid 21 19 

Benzoates 26 28 

Pyridine derivatives 31 20 

Carboxylic acid 115 29 
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The calculated mobilities were compared to the experimental values and mean

percentage deviation (MPD) was computed as an accuracy criterion by:

∑
−

=
N

1 observed

observedcalculated

µ

µµ

N

100
MPD (2)

where N is the number of experimental data points. All the calculations were performed

using SPSS software.

In order to compare the proposed method with previously approved empirical

well-known Offord method, the Q/M2/3 parameter was calculated for all data sets.

The Q (charge) was calculated for each molecule according to the buffer pH and

the pKa of each molecule. The molecules were considered full ionized if the pKa at

least 2 units differs from the pH of the background electrolyte.

RESULTS AND DISCUSSION

The stepwise regression methods was performed for each set (which were divided

to 2/3 training and 1/3 prediction data points) in order to select the best predictors.

The descriptors with the highest correlation with the experimental mobility data

and the lowest inter-correlation with each other were selected for each set. The

selected variables were compared with each other and the most frequently selected

ones were chosen. The selected variables (x0v, x1v, x2sol) were correlated with the

dependent variable (ln µ which we found that results to better predictions) and also

with each other. As the highest Pearson correlation coefficient was observed

between electrophoretic mobility and predictors were different for each data set,

we developed three single parameter models and compared the models properties

with each other. To test the applicability of the selected descriptors, the constants of

the considered models, i.e., eqn. 3 were computed and their statistical significance

were evaluated using t-test.

Average of correlation coefficients, along with F values and MPDs were

considered as the final variable selection criteria. The general form of the best

MLR model is:

ln µ = J0 + J1X1 (3)

where J0 and J1 are the model constants and X1 denotes one of the selected descriptors.

Whole training data points of each set were fitted to eqn. 3 and the back-calculated

mobilities were used to compute the MPD values which were listed in Table-3.

These analyses were called correlative analyses and showed the fitness ability of a

model. The overall MPDs (OMPDs) for these analyses were 4.7, 4.7 and 7.1 % for

x0v, x1v and x2sol as dependent variable, respectively. Similar results were reported

in an earlier paper for a six constant MLR model (eqn. 1) using chemical descriptors

computed by HyperChem for these 5 data sets18. The OMPD for correlative analyses

of eqn. 1 was 1.4 % and the results of paired t-test showed that there is no significant

difference between OMPDs of eqns. 1 and 3 (p > 0.05). It should be noted that eqn. 1
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TABLE-3 
SINGLE PARAMETER CONNECTIVITY INDICES  

MODEL DETAILS FOR EACH DATA SET 

MPD (SD) 
Data set Predictor R 

Training Prediction 
F 

x1v 0.6 3.0 (3.1) 4.7 (3.1) 76.2 

x2sol 0.8 2.6 (1.6) 4.0 (3.6) 70.9 Sulfonamides 

x0v 0.9 2.2 (1.8) 1.9 (1.4) 23.6 

x1v 0.9 2.3 (2.0) 1.6 (0.7) 41.4 

x2sol 0.9 2.2 (1.6) 3.8 (2.6) 27.1 NSAIDs 

x0v 1.0 1.1 (0.5) 1.6 (0.6) 259.2 

x1v 1.0 5.0 (2.7) 6.7 (6.2) 28.7 

x2sol 0.9 8.2 (6.4) 9.0 (1.6) 23.4 β-Blockers 

x0v 0.9 5.6 (3.2) 5.9 (5.6) 41.3 

x1v 0.6 3.7 (2.6) 6.0 (3.6) 2.6 

x2sol 0.4 4.1 (2.6) 6.3 (3.9) 2.1 Benzoates 

x0v 0.4 3.7 (2.5) 5.9 (3.7) 3.0 

x1v 0.9 8.5 (7.5) 12.3 (6.4) 42.3 

x2sol 0.8 11.8 (7.3) 14.3 (6.4) 26.4 Amines 

x0v 0.9 9.8 (6.4) 11.3 (7.0) 32.1 

 OMPD for x1v 4.7 5.9  

 OMPD for x2sol 7.1 7.1  

 OMPD for x0v 4.7 5.1  

 

possesses six constant terms whereas eqn. 3 employs only two constant terms and

as a general rule in least square models, the more constant terms in a MLR model,

the more accurate the correlation. However, in this case, no significant difference

between MPDs of the models meaning that the descriptors of eqn. 3 are able to

better correlate the dependent variable in comparison with those of eqn. 1.

In order to check the predictive ability of the developed models, the mobilities

of prediction data points of each set were calculated using developed models and

reported in Table-3. The OMPDs for predictive analyses were 5.1, 5.9 and 7.1 %

for x0v, x1v and x2sol contained models, respectively. The corresponding value for

eqn. 1 was 4.8 %. As correlative analyses the difference is not significant. It should

be noted that all parameter selection and model development steps for eqn. 3 was

performed in the absence of prediction data points whereas the parameter selection

step for eqn. 1 was done in the presence of all data points.

Using OMPD as selection criteria between the developed models, both x0v

and x1v containing models were selected as suitable methods. In order to check the

capability of the developed models for using in electrophoretic method develop-

ment of external data sets, we obtained 3 different data sets from the literature and

tested present developed method without any parameter selection step. It is found

that the selected parameters (i.e., x1v or x0v) have significant correlation with

these mobility data. The correlative and predictive analyses were carried out for
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these data sets and the results are summarized in Table-4. These results reveal, the

model is able to predict the mobility with the OMPD of 9.1, 10.5 and 10.4 % for

x1v, x2sol and x0v as dependent variable, respectively. In order to evaluate the

models, leave group out method was used for each data set. About 30 % of data

were removed randomly from each data set and the remained were regressed to x0v

as training set. The MPDs were calculated for the predicted set (the removed data)

and summarized in Table-5. The largest deviation from the proposed methods

appeared through aromatic sulfonic acids data set which can be resulted from the

experimental data inaccuracy. The mean RSD of the reported mobilities from

different laboratories is about 8 %19. By considering 8 % for repeadibility of the

mobility data, the preduced MPDs could be considered acceptable.

TABLE-4 
ONE PARAMETER CONNECTIVITY INDICES  

MODEL DETAILS FOR EXTERNAL DATA SETS 

R MPD (SD) 
Data set Predictor 

Training Training Prediction 
F 

x1v 0.4 18.6 (11.2) 18.1 (12.3) 16.4 

x2sol 0.3 19.6 (12.7) 19.2 (14.1) 4.9 
Carboxylic 

acids 
x0v 0.4 17.3 (11.9) 20.0 (11.1) 14.4 

x1v 0.8 13.3 (14.0) 15.2 (10.9) 20.0 

x2sol 0.8 12.7 (13.2) 16.8 (10.5) 23.3 
Sulfonic 

acids 
x0v 0.7 13.9 (15.8) 15.3 (11.4) 15.7 

x1v 1.0 3.2 (2.1) 3.4 (2.7) 352.4 

x2sol 0.9 6.3 (5.5) 6.2 (5.1) 64.5 
Pyridine 

derivatives 
x0v 1.0 3.9 (3.3) 3.5 (3.2) 185.2 

 OMPD for x1v 11.7 9.1  

 OMPD for x2sol 12.9 10.5  

 OMPD for x0v 11.7 10.4  

 

Conclusion

The proposed model showed reasonably accurate calculations for the mobility

of analytes in the studied electrophoretic conditions. The advantages of the proposed

models are: (i) There is no need to special software to calculate the descriptor and

one can draw a molecule on paper and calculate the descriptors. (ii) It's a general

model and there is no need to descriptor selection for each new data set. (iii) There

is no need for complicated nonlinear numerical methods. (iv) It is an ideal method

for structural isomers, homologue series and small molecules. (v) It is applicable

for both CZE and MEKC methods.

But there are some limitations: (i) The proposed models are not able to distinguish

between E and Z isomers. (ii) It is not so useful for completely different molecular

structures. (iii) It is not so useful for larger molecules (such as peptides), possibly

because of many internal hydrogen binding and other interactions.
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TABLE-5 
LEAVE GROUP OUT RESULTS FOR x0v CONTAINING MODEL 

Data set Group R MPD (SD) Reported MPD 

1 0.8 13.1 (4.6) 

2 0.9 8.2 (9.0) Amines 

3 0.9 12.8 (10.1) 

12.3 

1 0.7 5.2 (4.7) 

2 0.4 4.5 (3.3) Benzoates 

3 0.5 2.8 (15.0) 

6.0 

1 0.9 5.6 (3.1) 

2 0.9 7.4 (10.0) β-Blockers 

3 1.0 6.7 (6.2) 

6.7 

1 0.9 1.5 (1.0) 

2 1.0 3.7 (3.0) NSAIDs 

3 1.0 1.6 (2.5) 

1.6 

1 0.9 4.0 (4.8) 

2 0.7 4.4 (1.8) Sulfonamides 

3 0.7 2.2 (1.7) 

4.7 

1 1.0 2.8 (1.6) 

2 1.0 3.8 (3.2) Pyridines 

3 1.0 2.9 (1.8) 

3.4 

1 0.8 19.3 (24.2) 

2 0.8 12.7 (12.5) Aromatiic sulfonic acids 

3 0.7 9.8 (6.3) 

15.2 

1 0.4 19.6 (10.3) 

2 0.5 19.9 (11.9) Carboxylic acids 

3 0.4 18.1 (11.3) 

18.1 
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