NOTE

Synthesis and Crystal Structure of 4,4'-Di-2-pyridyl-2,2'-dithiodipyrimidine (C₁₈H₁₂N₆S₂)

HUA-ZE DONG* and HAI-BIN ZHU[†] Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei-230061, P.R. China E-mail: dapdong@163.com

A new heterocylic sulfide ligand with molecular formula $C_{18}H_{12}N_6S_2$, named as 4,4'-di-2-pyridyl-2,2'-dithiodipyrimidine, was formed by the reaction of 4-pyridin-2-yl-pyrimidine-2-thiol with ferric nitrate. The crystal is monoclinic, space group P2₁/c with unit cell parameters: a = 11.777 (2) Å, b = 7.2830 (15) Å, c = 20.182 (4) Å, $\alpha = 90^{\circ}$, $\beta = 98.832$ (4)°, $\gamma = 90^{\circ}$, V = 1710.5 (6) Å³, Z = 4, Mr = 376.47, Dc = 1.470 g/cm³, $\mu = 0.327$ mm⁻¹, F(000) = 776, R = 0.0378, wR = 0.0749 for 1820 reflections with I > 2σ (I).

Key Words: 4-Pyridin-2-yl-pyrimidine-2-thiol, Hydrogen bonds, Heterocylic sulfide.

There has been increasing interest of heterocylic sulfide ligands in the field of coordination chemistry¹⁻⁶. In our previous paper, we reported two disulfide ligands derived from 4-pyridin-pyrimidine-2-thiol^{5,6}. Herein reported is a new disulfide complex $C_{18}H_{12}N_6S_2$.

All reagents for synthesis were commercially available and employed as received or purified by standard methods prior to use. 4-Pyridin-2-yl-pyrimidine-2-thiol was prepared by general procedure reported in the literature⁷. Analyses for carbon, hydrogen and nitrogen were performed on a Perkin-Elmer 1400C analyzer.

Synthesis: Fe(NO₃)₃·9H₂O metal salt (0.1 mmol) was mixed with 4-pyridinpyrimidine-2-thiol (0.1 mmol) and NaOH (0.1 mmol) in 20 mL of CH₃CN. The reaction mixture was stirred for 1 h and then filtered. The purple mother solution was allowed for one week to evaporate slowly and obtained colorless crystals blockshaped single crystals 1 suitable for X-ray analysis. Yield 57.1 %. Anal. calcd. for $C_{18}H_{12}N_6S_2$: C, 57.43; H, 3.21; N, 22.32 %. Found: C, 57.49; H, 3.30; N, 22.17.

Crystal structure determination: A single crystal of compound with dimensions of 0.2 mm × 0.2 mm × 0.2 mm was selected for crystallographic data collection at 291(2)K and structure determination on a Bruker SMART CCD-4K diffractometer employing graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å). A total of 8261 reflections were collected in the range of $2^{\circ} \le q \le 25^{\circ}$, of which 3009 reflections

[†]School of Chemistry and Chemical Engineering, Southeast University, Najing-211189, P.R. China, E-mail: zhuhaibin@seu.edu.cn.

Vol. 22, No. 6 (2010)

were unique with $R_{int} = 0.055$. The data were collected using SMART and reduced by the program SAINT. All the structures were solved by direct methods and refined by full-matrix least squares method on F_{obs}^2 by using SHELXTL-PC software package. Non-hydrogen atoms were placed in geometrically calculated positions. Hydrogen atoms were added according to theoretical model. The final full-matrix least-squares refinement including 235 variable parameters for 3009 reflections with I > $2\sigma(I)$ and converged with unweighted and weighted agreement factors of

$$R_1 = \Sigma(||F_0| - |F_c||) / \Sigma |F_0| = 0.0378$$
(1)

and $WR_2 = \{\Sigma[W(F_0^2 - F_c^2)^2]/\Sigma W(F_0^2)^2\}^{1/2} = 0.0749$ (2) where $W = 1/[\sigma^2(F_0^2) + (0.0280P)^2]$ and $P = (F_0^2 + 2F_c^2)/3$. The maximum and minimum peaks on the final difference Fourier map are are corresponding to 0.15 and -0.19 e/Å³, respectively.

The selected bond lengths and bond angles in Table-1. Respecting, Fig. 1 shows the molecular structure of the title compound. Fig. 2 shows the packing diagram of the title compound. In Fig. 1, the C-S-S-C torsion angle of 82.72 (9)° is similar with that in its analogue, namely 2,2'-dithiobis(4-pyridin-3-yl-pyrimidine)⁵. The S-S bond length of 2.0113 (9) Å in Fig. 1 is within the normal range^{1,2,5,6}. It is noted that the pyrimidinyl ring and the pyridyl ring of title complex are obviously not coplanar, the dihedral angles between the two heterocyclic rings is *ca*. 4.0° or 11.1°. In crystal packing, it is interesting to observe that the C-H…N intermolecular hydrogen bonds are formed between adjacent molecules resulting in a 3D supramolecular framework.

TABLE-1
SELECTED BOND DISTANCES (Å) AND ANGLES (°)

SELECTED BOND DISTANCES (A) AND ANGLES ()								
S1-S2	2.0113 (9)	N3-C5	1.343 (3)	N4-C13-N5	128.6 (2)			
S1 -C13	1.7690(2)	N3 -C9	1.329 (3)	N6-C14-C10	115.7 (2)			
S2 -C4	1.7830(2)	S2-S1-C13	104.63 (8)	N6-C14-C19	122.9 (2)			
N1 -C1	1.3430(3)	S1-S2-C4	105.66 (8)	S1-C13-N5	120.23 (17)			
N1-C4	1.3280(3)	C1-N1-C4	115.37 (19)	S1-C13-N4	111.17 (15)			
N2-C3	1.3380(3)	C3-N2 -C4	113.6 (2)	C5-N3-C9	116.5 (2)			
N2-C4	1.3140 (3)	_	_	_	_			

Fig. 1. Molecular structure of the present compound

Fig. 2. View of a 3D supramolecular framework of present compound showing the intermolecular hydrogen bonding

4958 Dong et al.

Asian J. Chem.

x, 5/2-y, $\frac{1}{2} + z$

TABLE-2 HYDROGEN BOND DISTANCES (Å) AND ANGLES (°)								
Type (D-HA)	d(D-H)	d(HA)	∠(DHA)	d(DA)	А			
C9-H9N5	0.9300	2.6100	149.00	3.437(3)	-x, -1/2 + y,3/2-z			

174.00

3.521(3)

2.5900

Conclusion

C16-H16...N1

Crystal structure of a new heterocylic disulfide complex has been synthesized and characterized by lemental analysis and X-ray diffraction analysis.

Supplementary material

Crystallographic data for the structure reported in this communication have been deposited with the Cambridge Crystallographic Data Center as supplementary publication No. CCDC 705137.

ACKNOWLEDGEMENT

This work is financially supported by National Natural Science of Foundation of China (project No. 20801011).

REFERENCES

- 1. L.S. Higashi, M. Lundeen and J. Seff, J. Am. Chem. Soc., 100, 8101 (1978).
- 2. R. Horikoshi and T. Mochida, Coord. Chem. Rev., 250, 2595 (2006).

0.9300

- 3. F.M. Tabellion, S.R. Seidel, A.M. Arif and P.J. Stang, J. Am Chem. Soc., 123, 7740 (2001).
- 4. G.M. Sheldrick, Acta Cryst., A64, 112 (2008).
- 5. J.-F. Ji, L. Li and H.-B. Zhu, Acta Cryst., E65, o1253 (2009).
- 6. H.B. Zhu, H. Wang and L. Li, Acta Cryst., E65, o1588 (2009).
- 7. H.Z. Dong, X. Liu and S.H. Gou, *Transition Met. Chem.*, **32**, 518 (2007).

(Received: 6 October 2009; Accepted: 2 March 2010) AJC-8500