NOTE

Synthesis and Crystal Structure of Di(thiocyanato-ĸN)*bis*(1,10-phenanthroline-5,6-dione-κ²N,N')-Manganese(II): [(C₁₂H₆N₂O₂)₂Mn(NCS)₂]₂

HUA-ZE DONG*, MENG LI and BAI-ZHONG LI[†] Department of Chemistry and Chemical Engineering, Hefei Teachers College, Hefei-230061, P.R. China E-mail: dapdong@163.com

A novel 3D supramolecular complex di(thiocyanato- κ N)*bis*(1,10-phenanthroline-5,6-dione- κ^2 N,N')manganese(II) with molecular formula [(C₁₂H₆N₂O₂)₂Mn(NCS)₂]₂, was formed by the reaction of 1,10-phenanthroline-5,6-dione with Mn(NCS)₂, in which metal ion was in a six-coordinated environments with a distorted octahedral geometry. Then independent mononuclear units are linked each other and pack in 3D-superamolecular network *via* hydrogen bonds interactions. The crystal is monoclinic, space group C2/c with unit cell parameters: a = 33.371 (3) Å, b = 8.8648 (8) Å, c = 18.7352 (18) Å, $\alpha = 90^\circ$, $\beta = 116.137 (1)^\circ$, $\gamma = 90^\circ$, V = 4975.6 (8) Å³, Z = 4, Mr = 1182.95, Dc = 1.579 g/cm³, $\mu = 0.746$ mm⁻¹, F(000) = 2392, R = 0.0431, wR = 0.1085 for 4363 reflections with I > 2σ (I).

Key Words: Manganese(II), 1,10-Phenanthroline-5,6-dione, Supramolecule, Hydrogen bonds.

The rational design and synthesis of coordinated complexes with physical and chemical properties derived from 1,10-phenanthroline-5,6-dione have been of increasing interest recently in materials science and chemical research¹⁻⁴. Here we report a new monomeric manganese(II) complex di(thiocyanato- κ N)*bis*(1,10-phenanthroline -5,6-dione- κ ²N,N')manganese(II) with the molecular formula [Mn(C₁₂H₆N₂O₂)₂(CNS)₂]₂.

All reagents for synthesis were commercially available and employed as received or purified by standard methods prior to use. 1,10-Phenanthroline-5,6-dione was prepared by similar procedure reported in the literature³. Analyses for carbon, hydrogen and nitrogen were performed on a Perkin-Elmer 1400C analyzer. Infrared spectra (4000-400 cm⁻¹) were recorded with a Bruker Vector 22 FT-IR spectrophotometer on KBr disks.

Synthesis: For the synthesis of present compound, a solution of ligand (0.2 mmol), $MnCl_2$ (0.1 mmol) and NH_4CNS (0.2 mmol) in 50 mL methanol was refluxed for 2 h and then cooled to room temperature and filtered. Single crystals suitable for X-ray analysis were grown from the methanol solution by slow evaporation at room temperature in air. Anal. calcd.for $C_{26}H_{12}N_6O_4S_2Mn$: C, 52.80; H, 2.04; N, 14.21. Found: C, 52.83; H, 2.08; N, 14.19.

[†]School of Chemistry and Chemical Engineering, Anhul University, Hefei-230039, P.R. China.

Vol. 22, No. 6 (2010) Syn

and

Crystal structure determination: A single crystal of compound with dimensions of 0.3 mm × 0.2 mm × 0.2 mm was selected for crystallographic data collection at 291(2)K and structure determination on a Bruker SMART CCD-4K diffractometer employing graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å). A total of 12206 reflections were collected in the range of 2.4° ≤ q ≤ 25.0°, of which 4363 reflections were unique with R_{int} = 0.046. The data were collected using SMART and reduced by the program SAINT. All the structures were solved by direct methods and refined by full-matrix least squares method on F²_{obs} by using SHELXTL-PC software package. Non-hydrogen atoms were placed in geometrically calculated positions. Hydrogen atoms were added according to theoretical model. The final full-matrix least-squares refinement including 371 variable parameters for 4363 reflections with I > 2 σ (I) and converged with unweighted and weighted agreement factors of

$$\mathbf{R}_1 = \Sigma(||\mathbf{F}_0| - |\mathbf{F}_c||) / \Sigma |\mathbf{F}_0| = 0.0431 \tag{1}$$

$$wR_2 = \{\Sigma[w(F_0^2 - F_C^2)^2] / \Sigma w(F_0^2)^2\}^{1/2} = 0.1085$$
(2)

where w =1/[$\sigma^2(F_0^2)$ + (0.0518P)²] and P = (F_0^2 + 2 F_c^2)/3. The maximum and minimum peaks on the final difference Fourier map are corresponding to 0.46 and -0.40 e/Å³, respectively.

The selected bond lengths and bond angles in Table-1. Respecting, Fig. 1 shows the molecular structure of the present compound. Fig. 2 shows the packing diagram of the manganese(II) compound. In the compound, $[Mn(C_{12}H_6N_2O_2)_2(CNS)_2]_2$, each Mn(II) cation located on an inversion center is coordinated by four N-bonded 1,10-phenanthroline-5,6-dione ligands (L) and two N-bonded thiocyanate anions. The asymmetric unit consists of one manganese cation, two thiocyanate anions and two 1,10-phenanthroline-5,6-dione ligands. The Mn-N bond lengths in the MnN₆ core are in the range of 2.117 (3) Å to 2.364 (2) Å. However positional disorder happened to one anion.

SELECTED BOND DISTANCES (Å) AND ANGLES (°)								
Mn1-N1	2.364 (3)	Mn1-N2	2.271 (3)	Mn1-N3	2.301 (3)			
Mn1-N4	2.281 (3)	Mn1-N5	2.148 (3)	Mn1-N6	2.116 (3)			
S1-C25	1.630 (3)	S2-S2_a	1.853 (4)	S2-C26	1.628 (11)			
S2' -C26'	1.608 (7)	O1-C12	1.218 (4)	O2-C11	1.209 (4)			
O3-C24	1.238 (6)	O4-C23	1.233 (5)	N1-Mn1-N2	70.77 (10)			
N1-Mn1-N3	79.56 (9)	N1-Mn1-N4	89.82 (10)	N1-Mn1-N5	156.72 (11)			
N1-Mn1-N6	102.28 (11)	N2-Mn1-N3	100.62 (10)	N2-Mn1-N4	160.36 (9)			
N2-Mn1-N5	93.33 (11)	N2-Mn1-N6	95.37 (12)	N3-Mn1-N4	71.98 (10)			
N3-Mn1-N5	87.13 (10)	N3-Mn1-N6	163.53 (13)	N4-Mn1-N5	104.20 (11)			
N4-Mn1-N6	91.60 (13)	N5-Mn1-N6	95.91 (12)	-	_			

TABLE-1 LECTED BOND DISTANCES (Å) AND ANGLES (

In crystal packing, it is observed that the C-H…O intermolecular hydrogen bonds are formed between adjacent molecules resulting in a 3D supramolecular framework. All hydrogen bond patterns are given in Table-2.

Fig. 1. Molecular structure of the manganese(II) Fig. 2. View of a 3D supramolecular framework complex of manganese(II) complex showing the

of manganese(II) complex showing the intermolecular hydrogen bonding

TABLE-2
HYDROGEN BOND DISTANCES (Å) AND ANGLES (°)

Type (D-HA)	d(D-H)	d(HA)	∠(DHA)	d(DA)	А
C7-H701	0.9300	2.3600	156.00	3.233 (4)	x, 1-y, $\frac{1}{2}$ + z

Conclusion

Crystal structure of a novel 3D superamolecular manganese(II) complex has been synthesized and characterized by IR, elemental analysis and X-ray diffraction analysis.

Supplementary material

Crystallographic data for the structure reported in this communication have been deposited with the Cambridge Crystallographic Data Center as supplementary publication No. CCDC 749924.

ACKNOWLEDGEMENT

The author is indebted to the National Natural Science Foundation of China (No. 20871039) for financial support.

REFERENCES

- 1. Z. Fabiola, C. Antonio, E. Arturo, T. Alberto and M. Pedro, J. Org. Chem., 73, 4034 (2008).
- 2. G.X. Liu, R.Y. Huang, H. Xu, X.J. Kong and X.M. Ren, Polyhedron, 27, 2327 (2008).
- 3. J. Frey, T. Kraus, V. Heitz and J.P. Sauvage, Chem. Eur. J., 13, 7584 (2007).
- 4. A.B. Gaspar, A. Galet, M.C. Munoz, X. Solans and J.A. Real, Inorg. Chem., 45, 10431 (2006).

(Received: 6 October 2009; Accepted: 2 March 2010) AJC-8498