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The use of in silico approaches for successful prediction of pharmaco-

kinetic properties of compounds during new drug discovery has been

increasing exponentially. These in silico models, for the prognosis of

absorption, distribution, metabolism and excretion (ADME) are invariably

based upon the implementation of quantitative structure pharmacokinetic

relationship (QSPkR) techniques. This study was conducted to investigate

QSPkR for biological half-life (t1/2) in humans for 28 quinolone drugs

employing extra-thermodynamic multi-linear regression analysis

(MLRA) approach. The overall predictability was found to be high (R2

= 0.8752, F = 20.24, S2 = 9.3212, Q2 = 0.7384, p < 0.001). Topological,

steric and electrostatic parameters were found to primarily ascribe the

variation in t1/2. Logarithmic transformations of t1/2 tend to improve the

degree of correlations during one-parameter and two-parameter studies.

However, the inverse transformations of t1/2 remarkably enhance the

degree of correlations (both R2 and Q2). Maximum predictability for

quinolones was found to be 94.16 %.

Key Words: In silico absorption, distribution, metabolism and

excretion, QSPkR, Quinolones, Biological hal-life.

INTRODUCTION

Of late, it has been recognized that undesirable absorption, distribution, metabolism

and excretion (ADME) of new drug candidates are the major cause(s) of many

clinical trial failures. Accordingly, it has been an endeavour of the pharmaceutical

scientists to design new drug molecules realistically predicting their pharmacokinetic

and pharmacodynamic characteristics prior to their synthesis. Drug discovery and

development using the traditional approaches of random screening, in this regard,

have proved to be quite time consuming and expensive1. This has resulted in a

paradigm shift to identify such problems early during the drug discovery process2.

Apart from the scientific interest, there are economic considerations as well, as out

of numerous compounds synthesized, only a few eventually reach the market as a

new drug. A sizable proportion of drug candidates fail during clinical trials because
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of poor pharmacokinetic properties. This is an economic disaster, as the failed drugs

have been in pipeline for several years, with the large amounts of effort and money

invested in their development. Hence, the focus of drug development has widely

expanded to include procedures aimed at identifying potential failures as well as

successes3.

The in vitro approaches are widely practiced to investigate the ADME properties

of new chemical entities2. More recently, in silico modeling has been investigated

as a tool to optimize selection of the most suitable drug candidates for development.

Being able to predict ADME properties quickly using computational means is of

great importance, as experimental ADME testing is both expensive and arduous,

yielding low productivity. Use of computational models in the prediction of ADME

properties has been growing rapidly in drug discovery, as they provide immense

benefits in throughput and early application of drug design4.

Biological half-life (t1/2), a vital pharmacokinetic parameter, is helpful in designing

an optimal dosage regimen. This is related with duration of clinical effects and

frequency of dosing. Traditionally, the determination of t1/2 value of a drug candidate,

obtained via in vivo pharmacokinetic study, tends to be quite arduous, time-consuming

and expensive. Therefore, in an endeavour to predict the ADME characteristic of t1/2

values of quinolone drug candidates in fast and cost-effective manner, the in silico

procedures of quantitative structure pharmacokinetic relationship (QSPkR) modeling

have been explored5. The primary aim of QSPkR studies is to enable the drug designer

to modify the chemical structure of drug in such a manner as to alter its pharmaco-

kinetic properties without diminishing its pharmacodynamic potential6,7. The major

advantage of QSPkR lies in the fact that once such a relationship is ascertained

with adequate statistical degree of confidence, it can be a valuable assistance in the

prognosis of the behaviour of new molecules, even before they are actually synthesized8.

The key objective of current study is to investigate in silico QSPkR amongst

various quinolone drugs for t1/2. Quinolones were chosen for QSPkR, as this category

of drugs has been extensively used as antimicrobial agents in the treatment of serious

infections. Also, the quinolones consist of significant number of compounds (n = 28)

thoroughly investigated for their pharmacokinetic performance, particularly t1/2.

Further, the congeners in this class have many common pharmacokinetic charac-

teristics, including the mechanism and degree of affinity with body tissues. Moreover,

descriptors like experimental values of log P, melting point, etc., of these drugs are

known to be available in the standard texts or journals.

Construction of a typical QSPkR study consists of estimation or collection of

pharmacokinetic parameters, structural descriptors and the subsequent statistical

analysis, as shown in Fig. 19.

EXPERIMENTAL

Methods: QSPkR was conducted amongst quinolone drugs employing extra-

thermodynamic multi-linear regression analysis (MLRA) approach. The general
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Fig. 1. Quantitative structure-pharmacokinetic relationship (QSPkR): A multidisciplinary

endeavour

steps for developing QSPkR model include data set selection, chemical structure

entry, 3D structure generation, descriptor calculation and model construction that

involves selection of descriptors and validation of testing set using a pentium dual

core microprocessor (Intel, USA) desktop (IBM, India) with 2GB RAM and 160 GB

Hard Disk Drive. The computer peripherals included HP Laser 1020 series printer

and HP Scanjet 2400 scanner.

Dataset selection: The reported values of t1/2 of the quinolone drugs in humans

were taken from various literature sources10-14, as shown in Table-1. In order to

ensure that experimental variation in determining t1/2 does not significantly affect

the quality of our datasets, only t1/2 values obtained from healthy adult males after

oral administration were employed for constructing the dataset. A total of

28 quinolone drugs were selected and used as the dataset for this study. The t1/2

value of each of these compounds was also log-transformed (log t1/2) and inverse

transformed (1/t1/2) to normalize the data and to reduce unequal error variance,

respectively.

TABLE-1 
REPORTED VALUES OF t1/2 FOR VARIOUS QUINOLONE DRUGS  

EMPLOYED DURING FOR THE CURRENT QSPkR STUDIES 

Drug t1/2 (h) Drug t1/2 (h) Drug t1/2 (h) 

Amifloxacin 04.14 Gatifloxacin 07.46 Oxolinic acid 05.50 

Balofloxacin 07.80 Gemifloxacin 06.65 Pefloxacin 10.50 

Cinoxacin 01.80 Grepafloxacin 05.20 Pipemidic acid 02.30 

Clinafloxacin 05.65 Levofloxacin 07.40 Rosoxacin 06.50 

Ciprofloxacin 04.60 Lomefloxacin 06.35 Sitafloxacin 04.60 

Difloxacin 27.10 Moxifloxacin 11.80 Sparfloxacin 20.00 

Enoxacin 06.20 Nalidixic acid 01.75 Temafloxacin 07.90 

Fleroxacin 10.80 Norfloxacin 05.32 Tosufloxacin 04.02 

Flosequinan 01.45 Ofloxacin 05.48 Trovafloxacin 07.80 

Flumequin 09.50 – – – – 
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Molecular structure and descriptors: Various structural parameters were computed

theoretically employing diverse computer software.

Descriptors calculated by Pallas 2.0: The values of structural descriptors,

like log P, pKa, log D of various quinolones, were calculated using the software

Pallas 2.0 (CompuDrug International, Inc., USA). The structures of drugs were

graphically drawn on the monitor with the help of a mouse. Suitable templates/

rings were chosen, bonds were drawn and different heteroatoms were chosen from

the periodic table provided in the software and incorporated into the structure. The

rough graphical sketch representing the structural formula of the compound was

transformed to its least energy configuration. The name of the compound was entered

to let the structure of drug be stored under its assigned name in the software database.

For the estimation of the log P and log D, compounds from the database were

selected, the software run for the estimation of the desired descriptors and the results

were stored as MDL molfiles.

Descriptors calculated by ChemDraw: Three-dimensional structures of the

molecules were drawn in ChemDraw software environment. Structures of drugs

were graphically drawn on the monitor with the help of a mouse. Various steps

involved were: (i) Suitable templates/rings were chosen from the given set of these

in the software. (ii) Bonds were drawn to represent the skeleton of the substituents

attached. (iii) Different heteroatoms were chosen from the periodic table provided

in the software and were incorporated into the structure. (iv) The rough graphical

sketch representing the structural formula of the compound was arranged into its

least energy configuration. (v) The name of the compound was entered to let the

structure of drug under its assigned name be stored in the software database. (vi)

For the estimation of various descriptors, compounds from the database were selected,

the software run for estimation of the desired descriptors and the results were stored

in the output file the name to which was previously assigned. (vii) Each compound

from the database was selected and exported to the corresponding molfile after

energy minimization is accomplished using Chem3D software.

Parameters calculated by DRAGON: The molfiles generated by Chem 3D

software pro v.3.5. (Cambridge Soft Corporation, Cambridge, MA) were imported

to Dragon 5.5 (Talete Srl, Milano, Italy). As many as 1497 diverse descriptors, viz.,

constitutional, geometrical, topological, steric, electrostatic etc., were calculated

with the help of Dragon software.

Parameters calculated by CODESSA: A large number of molecular descriptors

were calculated with the help of CODESSA 2.0 software (Semichem, Shawnee,

USA) also. First of all, a worksheet was made in MS-Excel environment to load

various molfiles into the software. Each file was saved as a non-document ASCII

text file. The said text file consisted of number of columns separated by blanks,

each column containing data of one type, e.g., structure names, property values,

file names, etc. Each line contained the same number of columns. The program

then scanned the file in order to determine number of columns and provided columns
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dialog box, where the type of data in each column and other parameters were specified.

Before calculating the descriptors, each loaded structure was checked and necessary

corrections were made. "Structure dialog box" was used to enter or change structure

name as well as name and type of file associated with every structure. Various

classes of descriptors, viz., constitutional, topological, geometrical and electrostatic

descriptors were selected for calculation using the "calculate descriptor" dialog

box. Initially, the descriptors were computed for all the structures loaded into the

software. Further, as and when any information was available about new congeners,

those particular compounds were also selected for computation of descriptors.

Multivariate statistical analysis: Attempts were made to correlate all the

descriptors of quinolone drugs with their respective t1/2 values. The initial regression

analysis was carried out using HEURISTIC analysis, followed by the best multi-

linear regression (BESREGMS) option of CODESSA software. In case of the HEU-

RISTIC method, a pre-selection of descriptors was accomplished. All the descriptors

were checked to ensure that the value of each descriptor was available for each

structure and there is significant variation in these values. Descriptors, for which

the values were not available for every drug structure in the data, were discarded. A

hard copy showing the descriptors discarded in this manner was obtained. Thereafter,

the one-parameter correlation equations for each descriptor were calculated. The

number of descriptors in the starting set was further reduced by discarding these if:

(i) The F value for the one-parameter correlation with the descriptor is below 1.00.

(ii) The r2 value of one-parameter equation is less than assigned value of r2
min (usually

0.10). (iii) The one-parameter t-value is less than the assigned value (usually 1.50).

(iv) The multi-parameter t-value is less than the assigned value (usually 1.95). (v)

The descriptors are highly inter-correlated with another descriptor (r2 > 0.65).

The maximum number of descriptors involved in a correlation was chosen in

accordance with the ratio of number of compounds to number of descriptors as 4:1.

The HEURISTIC methods tended to yield the best ten correlations each yielding

highest values of r2 and F ratio. Choosing these descriptors, many such attempts

were carried out to obtain the significant correlation(s). A set of important descriptors

found to significantly contribute to the variation of t1/2 was constructed. Further, a

search for the multi-parameter regression with the maximum predicting ability was

performed. Regression plots of each correlation thus attempted were examined.

Residual plots were also examined for absence of randomization and distinct patterns

in order to eliminate chance correlations. Logarithmic and inverse transformations

of various pharmacokinetic properties were also carried out in order to screen the

correlation with improved values or R2 and/or F ratio. Graphs were made using

MS-Excel software.

The validity of the equation and the relative importance of the different parameters

used were judged by four statistical criteria; viz., multiple correlation coefficient R,

Fisher's F-value, Student's t values and the standard deviation. Depending upon the
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values of these statistical parameters, the statistical significance of each correlation

was determined on the basis of the F-criterion and the magnitudes of cross-validated

R2, commonly represented as Q2, were calculated according to eqn. 1.
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A model with good predictive performance had a Q2 value close to 1. Models

that did not predict better than merely chance alone could have negative values.

The F-values were computed from the ratio of variances, according to eqn. 2:
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where, S1 and S2 are the standard deviations between samples and within samples,

respectively.

The values of computed F-ratio were compared with that of the critical values

tabulated in statistical texts and the levels of significance discerned. The QSPkR

correlations found to be statistically significant were compiled using CODESSA

software and stored as respective files, under the extension of COD. The names of

descriptors were conveniently coded using a WS-Macro program and the files converted

to appropriate ASCII format using an in-house developed program code. These

ASCII files were further converted into tabular formats in MS-Word milieu.

Therefore, to check for chance correlation, two different approaches were

adopted. The first was to limit the drug: descriptor ratio to 4:1. This approach reduced

the probability of getting a chance correlation15,16. The second was the calculation

of the cross-validated R2 employing the leave-one-out (LOO) method17. The bar

diagram of the maximum values of the per cent explained (or predicted) variance

(i.e., R2* 100) of untransformed t1/2 of 3-D QSPkR studies constructed in comparison

to that of the log-transformed and inverse transformed values of t1/2 of various

quinolones.

RESULTS AND DISCUSSION

Biological half-life (t1/2) expresses the period of time required for the amount

or the concentration of a drug in body fluids to get reduced by one-half of its original9.

Biological half-life (or elimination half-life) is a complex parameter obtained from

the terminal linear elimination phase. The t1/2 values were available for 28 quinolone

drugs. Therefore, correlations were attempted keeping the number of maximum

descriptors to 7, thereby limiting the drug: descriptor ratio to 4:1.

As mentioned in Table-2, the magnitude of t1/2 was found to significantly depend

upon the topological, steric and electrostatic parameters. The prominent topological

parameters influencing t1/2 encompassed Kier shape indices, Kier Hall indices, etc.

steric parameters included molar refractivity, molecular surface area, etc. and electro-

static parameters encompassed HASA, WNSA, etc. as is vivid from Table-2.
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TABLE-2 
SIGNIFICANT LINEAR, LOGARITHMIC AND INVERSE QSPkR EQUATIONS  

FOR A SERIES OF 28 QUINOLONES USING BIOLOGICAL HALF-LIFE  
AS THE PHARMACOKINETIC PARAMETER 

Equations m R2 F S2 Q2 p < 

t1/2 = - 9.687 + 2.432 RMW 1 0.3032 7.29 32.9491 0.0917 0.050 

t1/2 = -16.976 + 1.342 KHI3 + 0.5231 WNSA-3 2 0.4104 08.16 29.7014 0.2140 0.050 

t1/2 = -32.785 + 1.897 KSI2 + 0.6720 WNSA-3 - 
2.3276 SIC1 

3 0.5268 09.78 24.7221 0.3211 0.005 

t1/2 = 76.416 + 3.419 KHI3 + 0.4307 HASA-1 - 
68.764 BIC2 - 7.4626 AIC2 

4 0.6378 11.74 21.1223 0.3824 0.005 

t1/2 = 109.762 + 2.9354 KHI3 + 0.3292 HASA-1 - 
53.473 BIC2 + 16.473 HASA-2/ TMSA - 1.4372 
SIC1 

5 0.7241 14.42 14.3406 0.4928 0.005 

t1/2 = 148.974 + 1.9214 KHI3 + 0.4329 WNSA-3 - 
109.871 BIC2 + 28.691 HASA-2/TMSA - 5.3292 
AIC1 – 0.1329 Es 

6 0.8109 17.51 11.5470 0.6142 0.001 

t1/2 = 223.647 + 1.6721 KHI3 + 0.3932 WNSA-3 – 
152.462 BIC2 + 24.692 HASA-2/TMSA + 0.19814 
HASA-1 + 1.431 KSI2 – 0.01134 Es 

7 0.8752 20.24 9.3212 0.7384 0.001 

log t1/2 = -0.4692 + 0.0044 CIC0 1 0.3842 18.90 0.0624 0.2144 0.001 

log t1/2 = -0.6284 + 0.0642 KSI1 – 3.1243 BIC2 2 0.4869 15.46 0.0548 0.3310 0.001 

log t1/2 = -1.6992 – 9.688 MSA + 0.00214 piPC05 + 
0.004138 HASA-1 

3 0.5816 14.78 0.0421 0.4214 0.001 

log t1/2 = -2.3042 – 13.127 MSA + 0.00109 piPC05 
– 2.9321 BIC2 + 0.006291 HASA-1 

4 0.6754 15.25 0.0324 0.5153 0.001 

log t1/2 = 0.5422 - 3.1421 BIC2 + 0.002011 HASA-
1 + 0.1204 KHI3 + 0.0024 WNSA-2 + 0.0104 MR 

5 0.7670 16.23 0.0278 0.6278 0.001 

log t1/2 = -0.9321 - 1.9821 BIC2 + 0.001904 HASA-
1 + 0.0998 KHI3 – 10.519 MSA + 0.0014 WNSA-2 
+ 0.0113 MR 

6 0.8250 17.28 0.0198 0.6904 0.001 

log t1/2 = 4.7401 - 2.9048 BIC2 - 16.471 MSA + 
0.014011 HASA-1 + 0.08188 KHI3 + 0.0019 
WNSA-2 + 2.5761 HASA-1/TMSA + 0.00914 MR 

7 0.8814 19.76 0.0106 0.7436 0.001 

1/t1/2 = -0.61013 + 0.34182 DECC 1 0.4704 34.46 0.0125 0.3104 0.001 

1/t1/2 = 0.04091 - 3.9614 PW5 + 0.002176 D/Dr05 2 0.6109 29.16 0.0104 0.4417 0.001 

1/t1/2 = 0.14123 - 5.7642 PW5 + 6.708 MR + 
0.11321 KHI3 

3 0.6875 27.42 0.0097 0.559 0.001 

1/t1/2 = 0.50137 + 114.76 Xt – 7.3214 PW5 – 
0.47291 HASA-2/SQRT (TMSA) + 0.16923 KHI3 

4 0.7712 30.54 0.0068 0.6140 0.004 

1/t1/2 = -0.67714 + 123.98 Xt + 4.716 MR + 0.1931 
KHI3 - 4.9142 PW5 + 0.001140 D/Dr05 

5 0.8108 25.24 0.0044 0.7706 0.001 

1/t1/2 = 0.09127 + 154.74 Xt + 8.721 MR + 0.1114 
KHI3 – 3.1974 PW5 + 0.00124 D/Dr05 – 2.9176 
HASA-2/SQRT (TMSA) 

6 0.8846 24.96 0.0027 0.8508 0.001 

1/t1/2 = 0.48718 + 163.94 Xt – 10.336 PW5 + 9.135 
MR + 0.00302 D/Dr05 – 0.021314 HASA-2 + 
0.20113 KHI3 + 0.23412 DECC 

7 0.9416 20.78 0.0013 0.8217 0.001 
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m = number of descriptors employed in the MLRA equation. RMW = Relative molecular weight;

KHI3 = Kier and Hall index (order 3); WNSA-3 = WNSA-3 weighted PNSA (PNSA3* TMSA/

1000) [Zefirov's PC); KSI2 = Kier Shape index (order 2); SIC1 = Structural information content

(neighborhood symmetry of 1-order); HASA-1 = Hydrogen acceptors dependent HASA-1

[Zefirov's PC]; BIC2 = Bonding Information Content (order 2); AIC2 = Average Information

Content (order 2); HASA-2/TMSA = Hydrogen acceptors dependent HASA-2/TMSA [Zefirov's

PC]; AIC1 = Average Information Content (order 1); Es = Taft steric parameter; CIC0 = Com-

plimentary Information Content (order 0); KSI2 = Kier Shape index (order 2); KSI1 = Kier

Shape index (order 1); MSA = Molecular surface area; PiPC05 = Molecular multiple path count

of order 05; WNSA-2 = WNSA-2 weighted PNSA (PNSA2* TMSA/1000) [Zefirov's PC); MR

= Molar refractivity; DECC = eccentric; PW5 = Path/walk5-Randic shape index; D/Dr05 =

distance/detour ring index of orders5; Xt = Total structure connectivity index; HASA-2/SQRT

(TMSA) = Hydrogen acceptors dependent HASA-2/SQRT (TMSA) [Zefirov's PC]; HASA-2 =

Hydrogen acceptors dependent HASA-2 [Zefirov's PC].

Logarithmic transformations of biological half-life tend to improve degree of

correlations during one-parameter and two-parameter studies. The inverse transforms

of biological half-life remarkably enhanced the degree of correlations for both R2

and Q2. There was quite significant reduction in S2 values, attributable to reduction

in the magnitude of the property values.

The values were found to be highly predictable (p < 0.001) during the current

QSPkR studies. As lipophilic parameters were not observed to be considerably

significant, the diffusional interactions tend to outweigh the permeational ones.

Dependence of biological half-life on the topological descriptors has also been

reported in literature18,19. However, dependence of half-life has also been reported

on lipophilic parameters20-22, the difference in inference ascribable to lesser number

of descriptors (primarily lipophilic) in those studies.

Fig. 2 shows the linear and residual plots between the reported values of t1/2 and

those predicted using multi-parameter QSPkR studies for a series of 28 quinolones.
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Fig. 2. Plot between the predicted and reported values of t1/2 for QSPkR of quinolones.

The inset shows the corresponding residual plot
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Figs. 3 and 4 depict the corresponding plots for log-transform of t1/2 and inverse

transform of t1/2, respectively. The study of residual plots in case of inverse transform

of t1/2 shows that t1/2 values tend to be clustered. However, in the residual plots of t1/2

and log transform of t1/2, the cluster tends to be partially dispersed and the plots

seems to be more regulated vis a vis plots of inverse transform of t1/2. Fig. 5 depicts

the bar diagram of the maximum values of the per cent explained (predicted) variance

of untransformed t1/2 of 3-D QSPkR studies in comparison to log transformed and

inverse transformed t1/2 values of various quinolones. Thus, the current in silico

QSPkR studies yielded high degree of fruition in the ADME prognosis of t1/2 property

parameter of quinolone drugs.
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Fig. 3. Plot between the predicted and reported values of log t1/2 for QSPkR of quinolones.

The inset shows the corresponding residual plot
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Fig. 4. Plot between the predicted and reported values of 1/t1/2 for QSPkR of quinolones.

The inset shows the corresponding residual plot
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Fig. 5. Bar diagram depicting per cent explained variance of untransformed t1/2 of 3-D

QSPkR studies in comparison to log-transformed and inverse transformed t1/2 of
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Conclusion

Highly significant results on in silico prognosis of t1/2 (p < 0.001), attributed major

variation to topological, steric and electrostatic descriptors vouching the dependence

on the diffusional interactions. Plausibility of any chance correlations was discarded

in the light of high magnitudes of Q2 obtained in the current QSPkR  studies. Maximum

predictability for quinolones was found to be 94.16 %. the pharmacokinetic performance

of a drug is also known to be not merely a function of its physicochemical nature,

but also of the biological system(s) too like somatic, psychological, pathological,

environmental, nutritional, genetic, hereditary and diurnal status of the human subjects.

This causes a great deal of plausible variation in pharmacokinetic profiles amongst

the human volunteers undergoing study. The literature values of the pharmacokinetic

parameters taken up in the present investigations, pertain to diverse subject populations

hailing from different age groups, genders, races, nutritional and physical attributes,

etc., studied in different geographical regions under different weather conditions.

Considering these potentially high inter-subject and intra-subject variations amongst

the pharmacokinetic parameters, the currently established relationships assume much

higher credibility in silico.
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