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In this paper, a new way is proposed to confirm that the organic

electroluminescence efficiency can exceed the 25 % limitation of that

of photoluminescence in frequency domain. In present experiment, the

spectra shows two characteristic emission bands and the high and low

energy emission bands are due to singlet and triplet excited states. The

triplet emission has longer lifetime than that of singlet emission and the

emission intensity of short lifetime changes (increase and decrease) more

dramatic than that of long lifetime with the changing frequency. So, it

may be concluded that the 25 % limitation is not perfect and can be

exceeded in the frequency domain at a given frequency.
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INTRODUCTION

It is generally believed that the electroluminescence efficiency is limited to 25 %

of that of photoluminescence based on the statistics of spin multiplicity. It is to say,

for recombination of a pair of electron and hole (both spin 1/2), there are four

microstates in total, with three triplet states and one singlet state. But recent reports

have indicated that the ratio between the electroluminescence and photolumines-

cence quantum yields can exceed this limitation1-8 and the reason for this is under

investigation. In reference9,10, they found a remarkable dependence of the ratio on

the applied electric field. While from Wilson et al.5, the ratio is almost independent

of the external electric field. Theoretically, several models have been employed to

explain why the ratio is not fixed at 25 %. Bittner and Kobrak7, have simulated the

intrachain collision of positive and negative polarons through a mixed quantum/

classical molecular dynamics approach to illustrate that the ratio can be exceeded.

Tandon et al.10 observed an abrupt increase in the ratio with respect to the electric

field from a quantum-dynamical calculation. Shuai et al.8 have applied the Fermi-

golden-rule (FGR) to calculate the matrix elements for the exciton formation process,

for p-phenylene-vinylene (PPV), they conclude that this ratio can generally exceed

the 25 % limitation. In reference11, a correlated quantum-chemical approach coupled

with a first-order perturbation is used to investigate the relationship between the

ratio and the electric field. It is found that for p-phenylene-vinylene oligomer, the

ratio increases with the electric field.



In this paper, we propose a new way in the frequency domain to illustrate that

the 25 % limitation can be exceeded.

EXPERIMENTAL

The device ITO/PEDOT:PSS/PVK:Ir(ppy)2(acac)/BCP(10 nm)/Alq3(20 nm)/

Al has been fabricated. The PEDOT:PSS [poly(3,4-ethylenedioxythiophene):

poly(styrene sulfonate)] and PVK [poly-(N-vinylcarbazole)]: Ir(ppy)2(acac) [bis(2-

phenylpyridine)(acetylacetonate)iridium(II)] were fabricated by spin-coating method

with the rotation rate 2000 rpm (rotation/min). The PVK and Ir(ppy)2(acac) were

dissolved in chloroform with the concentration 10 and 0.5 mg/mL, respectively.

The ratio of PVK to Ir(ppy)2(acac) was 1:0.2 % in weight. The BCP (2,9-dimethyl-

4,7-diphenyl-1,10-phenanthroline), Alq3 (tris(8-hydroxy-quinolinato)aluminium)

and Al were deposited in a vacuum chamber (the pressure was 2 × 10-6 torr) by

thermal evaporation method. The typical deposition rate was about 0.03 nm/s. The

thickness of layer is controlled by a quartz crystal monitor. The electrolumines-

cence was measured using the fluolog-3 fluorescent spectrometer made by SPEX.

The measurement was carried out at room temperature in ambient atmosphere.

RESULTS AND DISCUSSION

Generally, the luminescent centers which have been excited cannot be excited

again and they can absorb photons again only after their de-excitation, so the lumine-

scence lifetime and absorption rate of luminescence center have direct influence on

the efficiency. The absorption rate of luminescent center can be controlled by changing

the driving frequency, so the luminescence efficiency can be improved by adjusting

the driving frequency. In general the lifetime of singlet is thousand time shorter

than that of triplet, when the electrons still stay in the triplet, the electrons in the

singlet state may give many times of luminescence. We take the lifetime of lumine-

scence and driving frequency into consideration, the limitation of 25 % can be

exceeded.

Fig. 1 is the electroluminescence spectrum of the device under different frequency.

The intensity of both PVK and Ir(ppy)2(acac) emission increases with the increasing

of frequency up to 100 Hz then decreases. The voltage is a constant, that is 12 V,

when the frequency changes. In present experiment, the luminescence of PVK is

from singlet and that of Ir(ppy)2(acac) is from triplet.

Fig. 2 is the variation of ratio 
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2000, 5000 and 10000 Hz) with the changing frequency, here the I is the emission

intensity of PVK and Ir(ppy)2(acac). It can be observed that the r1 and r2 increase

with the increasing frequency. It is to say that the intensity of PVK emission change

(increase and decrease) dramatically than that of Ir(ppy)2(acac) emission.
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Fig. 1. Electroluminescence spectrum of the device under different frequency
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Fig. 2. Variation of r1 (a) and r2 (b) with frequency

In low-voltage cathodoluminescence, the decay time of green phosphors

SrGa2S4:Eu2+, ZnS:Cu, Al and Gd2O2S:Tb3+ is 490 ns, 20 and 500 µs, respectively.

In reference12-14, the efficiency of SrGa2S4:Eu2+ is higher than the other two phosphors

at a given current density. The luminescence efficiency of low voltage phosphors

can be greatly improved by choosing phosphors with a fast decay time that is consi-

derably less than the excitation dwell time. This indicates that the short lumines-

cence lifetime is in favour of improving luminescence efficiency.

In the electroluminescence of ZnS:Ce, Nd, the result is that the ratio of the

emission intensity Ce3+-Nd3+ is almost linearly increasing with the increasing exci-

tation frequency (Fig. 3). The luminescence of Ce3+ is I1:5d(2D)-4f(2F7/2) and

I2:5d(2D)-4f(2F5/2). The luminescence of Nd3+ is I3:
4G7/2-

4I9/2, I4:
4G5/2-

4I9/2 and I5:
4H11/

2-
4I9/2. From the slopes of these lines: K(I1:I3) > K(I1:I5) > K(I1:I4), K(I2:I3) > K(I2:I5)

> K(I2:I4), K(I1:I3) > K(I2:I3), K(I1:I5) > K(I2:I5) and K(I1:I4) > K(I2:I4). τ1, τ2, τ3, τ4

and τ5 are the lifetimes of luminescence I1, I2, I3, I4 and I5. Here τ1 and τ2 are about

30-100 ns. τ3, τ4 and τ5 are 3.2, 4.8 and 4.2 us, respectively. It can be conclude that

the increasing excitation frequency benefit the emission of short lifetime more than

those of long lifetime. The reason is that for the short lifetime of Ce3+ 
τ1 will be
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saturated at large frequency than that of long lifetime. This result is obtained under

the condition that the period of excitation is longer than the lifetime. This indicates

that the luminescence of short lifetime is prior to that of long lifetime with increasing

frequency15.
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Fig. 3. Ratio of emission intensity Ce3+-Nd3+

In the experiment, the PVK singlet emission has short lifetime and the

Ir(ppy)2(acac) triplet emission has long lifetime. From Fig. 2(a) the increasing intensity

of singlet emission is larger than that of triplet emission with the increasing frequency.

So the efficiency can be improved by adjusting the driving frequency and the 25 %

limitation can be exceeded in frequency domain.

Conclusion

In summary, it is concluded that the 25 % limitation can be exceeded in frequency

domain at a given frequency, because the different luminescence lifetime has different

luminescence efficiency at a given frequency and the short lifetime luminescence

is more benefit to the luminescence efficiency.
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