Synthesis of Pyrrolo[2,3-d]pyrimidin-4-ones(7-deazapurines) Under Solvent- and Catalyst-Free Conditions

A. Davoodnia*, M. Bakavoli, M. Khashi, R. Moloudi and N. Tavakoli-Hoseini
Department of Chemistry, Faculty of Sciences, Islamic Azad University, Mashhad Branch, Mashhad-91735-413, Iran
Fax: (98)(511)8424020; Tel: (98)(511)8435000
E-mail: adavoodnia@yahoo.com; adavoodnia@mshdiau.ac.ir
A facile one-pot synthesis of some new 3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-ones in good yields has been developed through cyclocondensation of 2-amino- 1 H -pyrrole-3-carboxamides with triethyl orthoesters in solvent- and catalyst-free conditions.

Key Words: Pyrrolo[2,3-d]pyrimidin-4-ones, 7-Deazapurines, Triethyl orthoesters, Solvent-free conditions, Catalyst-free conditions.

INTRODUCTION

Pyrrolo[2,3-d]pyrimidine (I) may be regarded as an analogue of purine (II) in which its $\mathrm{N}-7$ has been replaced by a CH group and therefore can be named as 7-deazapurine. Literature reports had already established pyrrolo[2,3-d]pyrimidins as antitumor ${ }^{1}$, antimicrobial ${ }^{2}$, antiangiogenic ${ }^{3}$ agents with potential application as enzyme inhibitors ${ }^{4}$. 7-Deazapurine moiety is also found in some important antibiotics $^{5-7}$. Moreover, these compounds have been shown to induce neurogenesis in murine embryonic stem cells ${ }^{8}$. On the other hand, 7-deazapurines have been synthesized as analogues of potent A_{1} - and A_{2}-adenosine receptor antagonists ${ }^{9}$. Some of 4-substituted aminopyrrolo[2,3-d]pyrimidins have been identified as selective A_{1}-adenosine receptor antagonists ${ }^{10}$. The later compounds are generally prepared from pyrrolo[2,3-d]-pyrimidin-4-ones as precursors ${ }^{10}$.

(I)

(II)

Prompted by these findings and our interest in the synthesis of new heterocyclic compounds with potential biological activities ${ }^{11-14}$, in this paper we wish to report an efficient approach to the synthesis of new 3,7-dihydro-4H-pyrrolo[2,3-
d]pyrimidin-4-ones (3a-h) (7-deazapurines) through cyclocondensation of 2-amino$1 H$-pyrrole-3-carboxamides ($\mathbf{1 a - c}$) with triethyl orthoesters ($\mathbf{2 a - c}$) without any solvent and catalyst (Scheme-I).

Scheme-I: Synthesis of new pyrrolo[2,3-d]pyrimidin-4-ones (7-deazapurines)

EXPERIMENTAL

Melting points were recorded on an electrothermal type 9100 melting point apparatus. The IR spectra were obtained on a 4300 Shimadzu spectrophotometer as KBr disks. The ${ }^{1} \mathrm{H}$ NMR (100 and 500 MHz) spectra were recorded on Bruker AC100 and Bruker DRX500 spectrometers. Mass spectra were recorded on a Finnigan-MAT 8430 mass spectrometer operating at an ionization potential of 70 eV .

General procedure for the synthesis of 3,7-dihydro-4H-pyrrolo[2,3-d]-pyrimidin-4-ones ($\mathbf{3 a - h}$): A mixture of 2-amino-1 H -pyrrole-3-carboxamides ($\mathbf{1 a - c})^{15}$ $(1 \mathrm{mmol})$ and triethyl orthoesters ($\mathbf{2 a - c}$) $(1.5 \mathrm{mmol})$ was heated under reflux for $6-8 \mathrm{~h}$. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was cooled to room temperature. The precipitate was filtered off, washed with n-hexane and recrystallized from ethanol to give new compounds 3a-h in good yields.

Spectral data for new compounds 3a-h

7-Methyl-5,6-diphenyl-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one (3a): Yield 70%; m.p. $287-289^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $d_{6}, \delta \mathrm{ppm}$): 3.57 (s, 3H, NCH_{3}), $7.07-7.42(\mathrm{~m}, 10 \mathrm{H}$, phenyl groups), $7.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ of pyrimidine ring), 11.92 (s, 1H, NH); IR (KBr, $v_{\text {max }}, \mathrm{cm}^{-1}$): 1655 (C=O), 3449 (NH); MS, m/z: 301 $\left(\mathrm{M}^{+}\right)$.

2,7-Dimethyl-5,6-diphenyl-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one (3b): Yield 66%; m.p. $350-352^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $d_{6}, \delta \mathrm{ppm}$): 2.38 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 7.08-7.42(\mathrm{~m}, 10 \mathrm{H}$, phenyl groups), $11.81(\mathrm{~s}, 1 \mathrm{H}$, NH); IR (KBr, $\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}$): $1652(\mathrm{C}=\mathrm{O}), 3423(\mathrm{NH}) ; \mathrm{MS}, \mathrm{m} / \mathrm{z}: 315\left(\mathrm{M}^{+}\right)$.

2-Ethyl-7-methyl-5,6-diphenyl-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4one (3c): Yield 65%; m.p. $307-308{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $d_{6}, \delta \mathrm{ppm}$): $1.26\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.65\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, 7.08-7.41 (m, 10H, phenyl groups), 11.78 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$); IR ($\mathrm{KBr}, \mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}$): 1655 (C=O), 3449 (NH); MS, m/z: 329 (M+).

7-Benzyl-5,6-diphenyl-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one (3d): Yield 60%; m.p. $220-222{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 5.34 (s, 2 H , CH_{2}), 6.70-7.50 ($\mathrm{m}, 15 \mathrm{H}$, phenyl groups), $7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ of pyrimidine ring), $12.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; IR (KBr, $\left.\mathrm{v}_{\max }, \mathrm{cm}^{-1}\right): 1654(\mathrm{C}=\mathrm{O}), 3422(\mathrm{NH}) ; \mathrm{MS}, \mathrm{m} / \mathrm{z}: 377\left(\mathrm{M}^{+}\right)$.

7-Benzyl-2-methyl-5,6-diphenyl-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one (3e): Yield 67%; m.p. $290-292{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 2.50 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.65-7.50(\mathrm{~m}, 15 \mathrm{H}$, phenyl groups), $12.56(\mathrm{~s}, 1 \mathrm{H}$, NH); IR (KBr, $\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}$): $1652(\mathrm{C}=\mathrm{O})$, $3424(\mathrm{NH})$; MS, m/z: $391\left(\mathrm{M}^{+}\right)$.

7-Benzyl-2-ethyl-5,6-diphenyl-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4one (3f): Yield 64%; m.p. $277-279{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 1.36 $\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.77\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.70-7.50$ $\left(\mathrm{m}, 15 \mathrm{H}\right.$, phenyl groups), $12.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; IR $\left(\mathrm{KBr}, \mathrm{v}_{\max }, \mathrm{cm}^{-1}\right): 1656(\mathrm{C}=\mathrm{O})$, 3424 (NH); MS, m/z : $405\left(\mathrm{M}^{+}\right)$.

7-Cyclohexyl-2-methyl-5,6-diphenyl-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one (3g): Yield 67%; m.p. 261-262 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 0.95-2.00 (m, 8H, cyclohexyl), 2.30-2.80 (m, 5H, cyclohexyl and CH_{3}), 3.70-4.10 (m, 1H, CH-N), 6.90-7.45 (m, 10H, phenyl groups), $12.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; IR (KBr , $\left.\nu_{\max }, \mathrm{cm}^{-1}\right): 1655(\mathrm{C}=\mathrm{O}), 3429(\mathrm{NH})$; MS, m/z: $383\left(\mathrm{M}^{+}\right)$.

7-Cyclohexyl-2-ethyl-5,6-diphenyl-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one (3h): Yield 62%; m.p. $338-340{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $d_{6}, \delta \mathrm{ppm}$): $1.00-1.20\left(\mathrm{~m}, 3 \mathrm{H}\right.$, cyclohexyl), $1.26\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.58(\mathrm{~d}, 1 \mathrm{H}, J=12$ Hz , cyclohexyl), 1.77 (d, $4 \mathrm{H}, J=10.4 \mathrm{~Hz}$, cyclohexyl), 2.56 ($\mathrm{m}, 2 \mathrm{H}$, cyclohexyl), $2.65\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.79(\mathrm{t}, 1 \mathrm{H}, J=12 \mathrm{~Hz}, \mathrm{CH}-\mathrm{N}), 7.02-7.42(\mathrm{~m}, 10 \mathrm{H}$, phenyl groups), $11.70(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$; IR ($\mathrm{KBr}, \mathrm{v}_{\max }, \mathrm{cm}^{-1}$): $1655(\mathrm{C}=\mathrm{O}), 3424(\mathrm{NH})$; MS, m/z: $397\left(\mathrm{M}^{+}\right)$.

RESULTS AND DISCUSSION

Treatment of 2-amino-1H-pyrrole-3-carboxamides (1a-c) with triethyl orthoesters ($\mathbf{2 a} \mathbf{a} \mathbf{c}$) under reflux without any solvent and catalyst gave products which were identified as 3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-ones (3a-h) (Scheme-I). The structural assignments of new compounds $\mathbf{3 a}$-h were based upon the spectral data.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e}$ did not show the two NH_{2} signals at $\delta 5.08$ and 5.30 ppm , but instead showed a 1 H signal at $\delta 12.56 \mathrm{ppm}$ for NH group as well as a sharp 3 H signal at $\delta 2.50$ for methyl protons indicating the formation of the bicyclic compound $\mathbf{3 e}$. Also, the signal of methylene group shifted of $\delta 4.98 \mathrm{ppm}$ for $\mathbf{1 b}$ to $\delta 5.33 \mathrm{ppm}$. The IR spectrum showed a band at $3424 \mathrm{~cm}^{-1}$ for NH absorption and a band at $1652 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{O}$ group. The MS of $\mathbf{3 e}$ showed a molecular ion peak at m/z: $391\left(\mathrm{M}^{+}\right)$corresponding to the m.f. $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$.

Conclusion

In conclusion, we have reported the synthesis of some new 3,7-dihydro- 4 H -pyrrolo[2,3-d]pyrimidin-4-ones (3a-h) (7-deazapurines) through cyclocondensation of 2-amino-1H-pyrrole-3-carboxamides (1a-c) with triethyl orthoesters (2a-c) without any solvent and catalyst.

REFERENCES

1. G. Acs, E. Reich and M. Mori, Proc. Nat. Sci., 52, 493 (1964).
M.S. Mohamed, A.E. Rashad, M.E.A. Zaki and S.S. Fatahala, Acta. Pharm., 55, 237 (2005).
2. A. Gangjee, O.A. Namjoshi, J. Yu, M.A. Ihnat, J.E. Thorpe and L.A. Warnke, Bioorg. Med. Chem., 16, 5514 (2008).
3. C.L. Gibson, S.L. Rosa, K. Ohta, P.H. Boyle, F. Leurquin, A. Lemacon and C.J. Suckling, Tetrahedron, 60, 943 (2004).
4. E.C. Taylor and W. Hendess, J. Am. Chem. Soc., 87, 1995 (1965).
5. S.M. Bayomi, E.P. Kenneth and J.W. Sowell, J. Heterocycl. Chem., 22, 83 (1985).
6. S.M. Bayomi, E.P. Kenneth and J.W. Sowell, J. Heterocycl. Chem., 22, 729 (1985).
7. S. Ding, T.Y.H. Wu, A. Brinker, E.C. Peters, W. Hur, N.S. Gray and P.G. Schultz, Proc. Natl. Acad. Sci., 100, 7632 (2003).
8. C.E. Mueller, U. Geis, B. Grahner, W. Lanzner and K. Eger, J. Med. Chem., 39, 2482 (1996).
9. R.M. Campbell, C. Cartwright, W. Chen, Y. Chen, E. Duzic, J.M. Fu, M. Loveland, R. Manning, B. McKibben, C.M. Pleiman, L. Silverman, J. Trueheart, D.R. Webb, V. Wilkinson, D.J. Witter, X. Xie and A.L. Castelhano, Bioorg. Med. Chem. Lett., 9, 2413 (1999).
10. A. Davoodnia, M. Momen-Heravi, E. Golshani, M. Bakavoli and L. Dehabadi, J. Chem. Res., 5, 257 (2007).
11. A. Davoodnia, R. Zhiani, M. Roshani, M. Bakavoli and M. Bashash, Phosphorus Sulfur Silicon Rel. Elem., 182, 1219 (2007).
12. A. Davoodnia, M. Bakavoli, Sh. Mohseni and N. Tavakoli-Hoseini, Monatsh. Chem., 139, 963 (2008).
13. A. Davoodnia, R. Zhiani and N. Tavakoli-Hoseini, Monatsh. Chem., 139, 1405 (2008).
14. W. Offermann, K. Eger and H.J. Roth, Arch. Pharm. (Weinheim), 314, 168 (1981).
