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The aim of this study is to develop a novel robust regression algorithm:

robust least squares support vector machine (RLS-SVM), to overcome

the limitation of the existing support vector machine at high percent of

contamination for spectral analysis. In the algorithm, firstly a subset is

selected randomly from the original data set to build regression model

and the robust estimates of the residuals for the whole set are generated;

then the confidence interval of the residuals distribution is applied itera-

tively to detect outliers. Finally, the LS-SVM estimates are created from

the regression model being trained with the selected subset without

outliers. The proposed algorithm is applied in the near infrared spectral

analysis of gasoline samples in order to predict their octane number

with some outliers. Compared with other support vector machine algorithms,

the test results show the breakdown point value for the algorithm can be

over 45 %. The results also show its priority in predicted precision.

Key Words: Robust regression, Breakdown point, Nonlinear, Least

square support vector machine, Spectral analysis.

INTRODUCTION

Spectral analysis combined with chemometrics has proved its efficiency for

laboratory and industry applications1 in providing non-destructive measurement of

many chemical properties2.

Because of nonlinearity between spectra and chemical properties, nonlinear

calibration methods perform well in spectral analysis1. As one of the nonlinear

calibration methods proposed by Vapnik3, support vector machines (SVM) has become

an important novel method in nonlinear calibration due to its remarkable characteristics

such as good generalization performance, requiring less training samples, the absence

of local minima and the sparse representation of its solutions4. In the last decade,

the least squares (LS) versions of SVM (LS-SVM) have been investigated5. In these

LS-SVM formulations one works with equality instead of inequality constraints

and a sum of the squared error cost function is used. This reformulation greatly

simplifies the problem. SVM and LS-SVM have successfully applied in many areas

such as pattern recognition, control systems, signal processing, spectral analysis,



etc.6-10. But LS-SVM solutions also have some potential drawbacks such as lost of

sparseness. This property might lead to estimates to be less robust.

In the field of spectral analysis, accuracy of the calibration model is most focused

on but its robustness is often ignored. However, the main drawback of spectral analysis

is linked to its lack of robustness in calibration models when dealing with slight

variations in experimental conditions. Samples with extreme characteristics, which

called outliers, can also be present in the data, especially in values of chemical

properties. Classical calibration methods are strongly influenced by the presence

of outliers and the models obtained may not describe the majority of the data well.

Thus, robust, not sensitive to the outliers, calibration methods are needed.

Many existed robust calibration methods11 can only eliminate outliers in spectra.

However, they hardly deal with outliers in chemical properties. Some methods are

based on linear calibration methods12-14, so their advantages are not totally display

when there is nonlinearity between spectra and properties.

Suykens et al.15 proposed a weighted least squares support vector machine (WLS-

SVM) that may provide robust calibration in order to overcome these drawbacks

concerning sparseness and robustness in LS-SVM framework. The WLS-SVM works

in the case of outliers and tailed non-Gaussian error distributions with good robustness

and sparseness. Christmann et al.16 enhanced robustness of support vector machine

by revise the influence function, but they do not give the regression results at high

per cent of outliers. Chuang et al.17 adopted the concept of traditional robust statistics

to fine tune the support vector of support vector machine, simulation results have

shown the effectiveness of the approximated function in discriminating against a

few outliers. However, it is subjective to determine the proper robust cost function

and parameters to iteratively compute and it is needed to specify the percentage of

outliers, this is improper for industrial processes. Moreover, its computational cost

is huge.

In this paper, we propose a novel robust least squares support vector machine

(RLS-SVM) regression algorithm for spectral analysis with good performance at

high percent of contamination. In the algorithm, we select the uncontaminated

samples as much as possible. In this procedure, a subset is selected randomly from

the original data set to estimate the whole set and the robust estimates of the residuals

are generated; then the confidence interval of the residuals distribution is applied

iteratively to detect outliers, therefore we may eliminate all outliers from the subset.

As a result, the LS-SVM estimates are applied to the regression only based on the

selected uncontaminated subset.

This paper is organized as follows. First, we give regression model of RLS-

SVM and the details in the implementations of the proposed RLS-SVM regression

algorithm and give a simulation example. After that, we apply this algorithm in a

real world spectral dataset collected from a production scale refinery and present

the comparison results with WLS-SVM, SVM and LS-SVM. Finally, the conclusions

are addressed.

4512  Bao et al. Asian J. Chem.



Theory: LS-SVM can not resist the outliers because of its least squares principle.

WLS-SVM is more robust than LS-SVM, however, it can not resist when the per

cent of outliers is higher than 25 %. This is because WLS-SVM is also based on

least squares. The weighted values are computed based on residuals being computed

by LS-SVM. In order to enhance the robustness of excited LS-SVM, we propose a

novel robust LS-SVM. We will apply uncontaminated subset for modeling by selecting

uncontaminated samples and eliminating outliers through iterative learning. After

the uncontaminated subset selected, the LS-SVM regression model based on it is

more robust than any other support vector machines.

Let us consider the RLS-SVM regression model. Giving a training dataset with

N input/output points {xk, yk}
N

k=1 {xk ∈ Rm and yk ∈ R}. The new optimization

problem can be defined by

ŝww
2

1
)e,w(Jmin T

h,e,w
+= (1)

   s.t. yk = wTj(xk) + b + ek, k = 1, …, N

where ϕ(·): Rm → Rmh a function which maps the input space Rm into a so-called

higher dimensional feature space Rmh, weight vector w ∈ Rmh is in primal weight

space; b is bias term; ŝ  is the robust estimate of standard deviation18 for the residuals

{ek}
N

k=1. It can be described as follows:
N

1k
N

1kkk |}}e{mede{|med483.1ŝ ==−= (2)

In eqn. 2, med means the median of residuals {ek}
N

k=1. The constant 1.483 = 1/

Φ-1(0.75) is an asymptotic correction factor for the case of normal errors18. It is

applied to adjust ŝ .

ŝ  is not disturbed by outliers easily and it can represent most distributions of

uncontaminated subset. The eqn. 1 cannot be solved directly. An iterative algorithm

will be introduced as follows.

Assume the residuals are normal distribution in most cases without outliers. To

the residuals with normal distribution, the confidence interval of residuals19 can be

selected as ].}e{medŝc,}e{medŝc[ N
1kk

N
1kk == +×+×−  The constant c is typically

chosen as c = 2.5 for a normal distribution. Because there will be very few residuals

larger than 2.5 ŝ . So we can choose uncontaminated data belong to the following

confidence interval.

c|ŝ/)}e{mede(|
N

1kkk ≤− = (3)

Based on eqns. 2 and 3, if there are some outliers in ek, we can find these

outliers by getting the robust estimates for residuals and applying confidence interval

of residuals distribution. If the per cent of contamination is high, confidence interval

will be disturbed by outliers. So we have to repeat this step iteratively. After iteration,

we may create the residuals subset without outliers. In the proposed algorithm, we

call this step a P-step, where P stands for 'purification' since this step can purify the

residuals set by eliminating those outliers in the training dataset. The objective of

this step is to select as many uncontaminated samples as possible. The workflow of

the P-step can be described as follows.
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P-step: Given a residuals set {ek}
N

k=1 as an input. Let j = 1.

(a) Sort the original dataset Ej = {e(k)| k = i1, …, iN}; (b) Choose the median of

Ej and compute ŝ  the robust estimate of standard deviation for Ej, choose all of the

data point )]e(medŝc),e(medŝc[ kk +×+×−∈  and transfer them into = Ej+1 = {e(k)|

k = i1, …, iN1
, so Ej+1 ⊆ Ej; (c) If Ej+1 = Ej then break from P-step and get the

residuals subset  without outliers; (d) Else let j ← j + 1 and go to step (b).

For example, a sorted dataset are giving E1 = {-15, 1, 2, 3, 4, 5, 6, 15, 20, 25,

30}. At first time, the med (e) is 5, ŝ  is 5.932 and we choose the data point {1, 2, 3,

4, 5, 6, 15} as E2; then in the second time, the med (e) is 4, ŝ  is 2.996 and we

choose the data point {1, 2, 3, 4, 5, 6} as E3; in last time, the med (e) is 3.5, ŝ  is

2.224 and E4 = {1, 2, 3, 4, 5, 6} = E3. So we choose the data subset without outliers.

Our robust algorithm can be divided into three parts: firstly a subset of sample

data H with h observations is selected randomly to build a LS-SVM model and

estimate all the dataset by this model, so we can get initial residuals subset {ek}
N

k=1;

h means the number of least normal sample20. Because the per cent of outliers is not

more than 50 %18, we choose h in the field of N/2 ≤ h ≤ N. Then P-step is used

iteratively to select uncontaminated residuals and corresponding samples without

outliers. In every iteration, the outliers in subset are discarded and the uncontami-

nated sample data outside the subset are selected into, so last subset may be contains

more than 50 % observations. Finally, we can use the selected training subset to

estimate the all set. We can describe our algorithm using a computational work

flowchart given in Fig. 1. This procedure is usually repeated several times and we

will choose the best answer as the result of RLS-SVM.

This algorithm is inspired by FAST-LTS algorithms20, but we apply P-step not

only to discard outliers but also select the uncontaminated sample data outside of

the initial subset and we apply LS-SVM for regression instead of least squares.

EXPERIMENTAL

Data set: Octane number is one of the most important properties of gasoline. It

is determined by standard knock intensity in specially designed, ASTM-CFR test

engines. The standard measurements are expensive, time-consuming and complicated.

From 1989, near infrared (NIR) spectroscopy combined with regression has been

extensively used to predict gasoline octane number21-23.

A group of 250 samples of gasoline was prepared for this experiment, which

are scanned by NIR spectra. All the samples were obtained from several refineries

in China without additives. The reference value is research octane number (RON),

which were measured with ASTM D2699 standard method. The research octane

number of these samples distribute from 89-98.

Apparatus and experimental parameters: We measure these spectra by USB-

2000 NIR spectrophotometer (Ocean Optics, USA) at 2 nm intervals over a wave-

length range of 650-1150 nm. Each sample was scanned 20 times at 50 ms/time

and we got the average spectrum. The cell material is quartz and the optical path is

10 cm. The spectra were acquired at room temperature (20-23 °C).

4514  Bao et al. Asian J. Chem.



Start

Choose any integer h, l = 1, i = 1, primal mean squared residuals
Q  = infinite

0

Construct an initial h-subset H  from 
the original data set randomly

0

N

Y

End

N

Computer residuals by LS-SVM regression estimator to
original data set using selected subset

Apply P-setp to get the uncontaminated residuals subset

Computer the mean squared residuals Q  of 
the uncontaminated residuals subset

′

i = i + 1

Q  < Q′ ′
–1

Compute the regression result LS-SVM based on
selected uncontaminated residuals subset

i > = Repeat calculation

Report the solution with lowest
corresponding Q

Y

Fig. 1. Computational work flowchart of RLS-SVM

USB-2000 has no thermostatic control. The dark spectrum and the reference

spectrum were taken before measuring the sample spectrum. To obtain an analytical

signal with satisfactory accuracy, we calculate absorbance spectrum as follows:

dref

ds

II

II
lgA

−

−
−= (4)

where Is means sample spectrum, Id means dark spectrum and Iref means reference

spectrum.

Preprocessing: Standard normal variate (SNV) transformation24 and Savitzky-

Golay smoothing25 were applied to every absorbance spectrum in order to reduce

its fluorescence and improve the signal-noise ratio. The absorbance spectra before

and after preprocessing are shown in Fig. 2. In this experiment, we specify the

predictor input matrix is the spectral data after preprocessing and the response

vector is research octane number.
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Fig. 2. NIR absorbance spectra of gasoline samples (a) before preprocessing; (b) after

preprocessing

Before applying our algorithm, we first apply Mahalanobis distance and Dixon

method26 to detect outliers in spectra, two abnormal spectra can be found out. We

finally discard the 2 abnormal samples and select remained 248 samples for modeling.

Modeling and evaluating criterion: We use the RLS-SVM in present experiment

compared with WLS-SVM, LS-SVM and standard SVM. All the 248 samples are

divided to two parts randomly. To ensure the calibration set and testing set get the

same Y-range and data points distribution, we first sort the samples by its research

octane number and then select 60 samples as testing set and the remainder 188

samples as calibration set.

Some extra large values are added to research octane number of calibration set

randomly in different percentage from 0-50 % to contaminate it. Firstly we testify

the robustness of RLS-SVM via regression on calibration set, then we use the conta-

minated calibration set to predict the research octane number in testing set.

To compare the regression performances, an appropriate criterion must be chosen.

A robust method should be resistant to outliers in the calibration set. Model robustness

can be represented the empirical breakdown point value27. Breakdown point value

is a percentage; it can be expressed that the estimator will be "breakdown" when

the per cent of outliers reaches to some point. Because we apply PCA and

mahalanobis distance to detect outliers in spectra above, there are only y-outliers

left.

For each percentage of contamination of calibration set, we calculate the conta-

minated regression value 
c

ŷ  and compare it to the original uncontaminated value
c

y , let

||yŷ||E
cc −= (5)

We add different percentage of outliers to the data set from 0-50 % of the data.

For each per cent of contamination we calculate the E. For example, if an algorithm

A
b

so
rb

a
n
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Wavenumber (nm)
A

b
so
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a

n
ce

Wavenumber (nm)
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has a breakdown point value of 30 %, E will be low and change little when the per

cent of contamination is lower than 30 %. While the per cent of contamination is

over 30 %, E would increase dramatically. Therefore, we can use this property to

get empirical breakdown point value.

Besides, root mean squared error of prediction (RMSEP) and correlation coeffi-

cient (R2) are considered for predicted precision. Root mean squared error of predi-

ction is defined by eqn. 6 and R2 is defined by eqn. 7.

∑
=

−=
p

N

1i

2p
i

p
i

p

)yŷ(
N

1
RMSEP (6)

∑ ∑
= =

−−=
p p

N

1i

N

1i

2p
i

2p
i

2 )yy(/)yŷ(R (7)

where, Np is the sample number of the testing set, 
p

ŷ  represent the predicted value

of RON of testing set, yp represents the real value of research octane number of

testing set and y  represents the mean of yp.

Parameters selection: Root mean squared error of prediction is selected as

criterion to determine the parameters of the algorithms in calibration estimator. We

select the model parameters to minimize the RMSEP. RBF kernel is used in all four

algorithms. The optimized parameters are in Table-1.

TABLE-1 
OPTIMIZED PARAMETERS 

Algorithms Parameters 

RLS-SVM γ = 20, σ2 = 200, h = n/2, repeated times = 100 

WLS-SVM γ = 20, σ2 = 200, c1 = 2.5, c2 = 3 

SVM C = 3, ε = 0.001, σ2 = 200 

LS-SVM γ = 20, σ2 = 200 

 

RESULTS AND DISCUSSION

Influence of the constant c: First, we analyzed the influence of the constant c

using the following two targets:

%100
outliers all ofnumber  The

outliers detected ofnumber  The
Diagnosis ×= (8)

%100
samples normal all ofnumber The

outlier as detected samples normal ofnumber  The
isMisdiagnos ×= (9)

We apply RLS-SVM with different value of c on calibration set at different

percentage of outliers from 0-50 %. The results can be seen in Fig. 3. When c = 2,

the diagnosis keeps 100 % until the per cent of outliers is over 45 %. However, the

misdiagnosis is 14 % when there is 5 % of outliers and 9 % when 10 % of outliers.

When c = 3, the misdiagnosis keeps 0 % but the diagnosis is near 0 % when the per
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cent of outliers just reaches 40 %. Only when c = 2.5, the diagnosis keeps 100 %

until the per cent of outliers is over 45 % and the misdiagnosis is no more than 5 %.

So we choose c = 2.5 in this paper.

Fig. 3. Diagnosis and misdiagnosis of different values of c (a) diagnosis; (b) misdiagnosis

Robustness: The empirical breakdown point change is shown in Fig. 4. The

breakdown point of RLS-SVM in high dimension is about 46 %. The breakdown

point of WLS-SVM is still less than 20 %. SVM and LS-SVM can not overcome

the influence of large value outliers, so their breakdown point values are very small.
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Fig. 4. Empirical breakdown value of four regression algorithms for gasoline data set

We give the value of E at 0, 10 and 20 % of contamination in Table-2. We can

see E of RLS-SVM also keeps near 2.5 and change little at these situations.
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TABLE-2 
E AT 0, 10 AND 20 % OF CONTAMINATION 

E 
Algorithms 

0 % 10 % 20 % 

RLS-SVM 2.4 02.6 02.7 

WLS-SVM 2.4 04.9 10.2 

SVM 2.0 07.3 14.2 

LS-SVM 2.4 11.3 18.9 

 
The regression estimate scatter diagrams of these algorithms are shown in Fig. 5

when the percentage of contamination is 30 %. RLS-SVM eliminates outliers completely,

so its regression results show the distribution of main part of samples and they are

close to uncontaminated value. The others are disturbed by outliers. So their regression

values are far away from the real values. From Fig. 5, it can be observed that RLS-

SVM is much more robust than any other support vector machines.

Predict precision: Now we observe and compare the predicted performances

of these four SVM algorithms and a kind of robust PLS algorithm-PLS_OD28. Table-3

presents the RMSEP and R2 of these algorithms at different percentages of conta-

mination.

Fig. 5. Scatter diagrams of regression research octane number (RON) versus contamina-

tive research octane number at 30 % contamination (a) RLS-SVM; (b) WLS-SVM;

(c) SVM: (d) LS-SVM

(a) RLS-SVM (b) WLS-SVM

(c) SVM (d) LS-SVM
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The results obtained from Table-3 clearly show a fast increase of the RMSEP

in LS-SVM and SVM when outliers are present in the training set, whereas RMSEP

of RLS-SVM changes little. WLS-SVM do not change obviously at low per cent of

outliers, however, when there are 30 % outliers, the RMSEP of them are about

1.93, 4 times as that of RLS-SVM. When there is no outlier, RLS-SVM performs

the same as LS-SVM; with the increase of the percentage of contamination, RLS-

SVM shows its benefits. PLS_OD has the similar robustness as RLS-SVM, but its

predict precision is worse then that of RLS-SVM. For example, RMSEP of PLS_OD

with 30 % of contamination is 0.72, almost 1.5 times of RMSEP of RLS-SVM with

same contamination. In fact, the RMSEP of RLS-SVM for contaminated data set is

still quite comparable to the RMSEP of LS-SVM for the uncontaminated data set.

TABLE-3 
PREDICTIVE PERFORMANCES OF FOUR ALGORITHMS  

AT DIFFERENT PERCENTAGE OF CONTAMINATION 

Per cent of contamination 0 % 10 % 30 % 

Algorithms RMSEP R2 RMSEP R2 RMSEP R2 

RLS-SVM 0.44 0.98 0.47 0.98 0.50 0.97 

WLS-SVM 0.43 0.98 0.48 0.98 1.93 0.62 

SVM 0.40 0.98 0.65 0.95 1.59 0.74 

LS-SVM 0.43 0.98 1.11 0.87 3.06 0.04 

PLS_OD 0.69 0.94 0.72 0.93 0.72 0.93 

 
Fig. 6 shows the scatter diagrams of real and predicted research octane number

at 30 % of contaminated training set. From Fig. 6, we know only RLS-SVM can

predict the testing sample accurately, the others are badly disturbed by the outliers.
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Fig. 6. Scatter diagrams of predicted research octane number (RON) versus real research

octane number at 30 % contamination (a) RLS-SVM; (b) WLS-SVM; (c) SVM;

(d) LS-SVM; (e) PLS_OD

4520  Bao et al. Asian J. Chem.



The results obtained by RLS-SVM show a good consistency between predicted

and real research octane number of gasoline data sets. In general, it is concluded

that the RMSEP of RLS-SVM is much acceptable and the RMSEP for the unconta-

minated data set are also comparable.

Influence of different kernel function: Here we compare the influence of

different kernel function. Other three kernel functions are used: linear kernel function

eqn. 10, polynomial kernel function eqn. 11 and sigmoid kernel function eqn. 12.

We still select the parameters to minimize the RMSEP. Therefore the constant q in

eqn. 11 is 2 and a and b in eqn. 12 is 1 and -0.75, respectively.

K(xi, xj) = xi·xj (10)

K(xi, xj) = [(xi·xj) + 1]q (11)

K(xi, xj) = tan h [a(xi, xj) + b] (12)

We first observe the breakdown point of these RLS-SVMs. It can be seen in

Fig. 7. Linear kernel function and polynomial kernel function are unsuitable for

spectral analysis and breakdown points of RLS-SVM with these two functions are

very low, not more than 15 %. Sigmoid kernel function is nonlinear function; it is

suitable for this experiment, so the breakdown point of RLS-SVM with sigmoid

kernel function is similar with that of RBF kernel function. But its regression residuals

are larger than that of RBF kernel function.

Per cent of outliers

Empirical breakdown point value

E

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

RBF kernel

linear kernel

polynomial kernel

sigmoid kernel

Fig. 7. Empirical breakdown value of RLS-SVM with four kernel functions for gasoline

data set

Second, we observe the predicted performances of these RLS-SVMs. The training

set with 10 % outliers is still used to predict the test set. The results are shown in

Table-4. The predicted result of RLS-SVM with RBF kernel function is the best. So

RBF kernel function is a reasonable choice.
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TABLE-4 
PREDICTIVE PERFORMANCES OF RLS-SVM WITH DIFFERENT  

KERNEL FUNCTION AT 10 % OF OUTLIERS 

Kernel function RMSEP R2 

RBF 0.50 0.97 

Linear 0.99 0.90 

Polynomial 0.97 0.90 

Sigmoid 0.68 0.95 

 

Conclusion

While SVM and LS-SVM have been widely applied in spectral analysis, however,

they are not robust when the y-outliers exist in the training dataset. WLS-SVM can

overcome the influence of outliers only when the percentage of contamination is

less then 20 % in our experiments. Nevertheless, the robustness can be further

enhanced by our RLS-SVM. The experimental results have shown that it is robust

towards contamination, whereas its performance is also good for uncontaminated

data sets. The breakdown point of RLS-SVM exceeds 45 %. RLS-SVM algorithms

proved their superiority over other LS-SVM algorithms both in robustness and

predicted accuracy.
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