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Adsorption kinetics of cyanide on coconut shell activated carbon

were determined from batch tests. The kinetic data were fitted to pseudo-

first-order and pseudo-second-order kinetic models and was found to

follow closely the pseudo-second-order kinetic model. Remaining cyanide

concentration in wastewater at several time after addition coconut shell

activated carbon are modeled by adaptive neuro-fuzzy inference system

(ANFIS) at different initial cyanide concentration. The results obtained

in this work indicate that ANFIS is an effective method for prediction

of remaining cyanide concentration in solution and have better accuracy

and simplicity compared with results obtained from the applicable

kinetic model.
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INTRODUCTION

Cyanides can both occur naturally or be man-made and many are powerful and

rapid-acting poisons1. Many of the cyanides in soil and solution come from industrial

processes. The major sources of cyanides in water bodies are discharges from some

metal mining processes2,3, chemical synthesis (nylon, fibers, resins, herbicides)4,

plating industries (plating bath)5 and publicly owned wastewater treatment facilities.

Hydrogen cyanide, sodium cyanide and potassium cyanide are the forms of cyanide

most likely to be in the environment as a result of industrial activities6. To protect

the environment and water bodies, effluents containing cyanide from various

industries must be treated before discharging into the environment. Hence, many

countries and environmental protection agencies have imposed limiting standards

for discharge of cyanide bearing wastewater to sewers. For instance the US Environ-

mental Protection Agency (USEPA) set regulations for the amount of cyanide

allowed in drinking water in which the maximum level allowed is 0.2 mg of cyanide

per liter of water (0.2 ppm)6.



Currently, wastewater containing cyanide is treated by chemical oxidation methods

(alkaline chlorination, ozonization and wet-air oxidation)7-9. However, these methods

are expensive and hazardous chemicals are used as the reagents (chlorine and sodium

hypochlorite)9. This treatment produces toxic residues which implies the necessity

of an additional level of detoxification10. The other treatment methods used such as

reverse osmosis11, biological oxidation/biodegradation12,13, ozonation14, acidifica-

tion/volatilization and reneutralization13,14, iron cyanide precipitation14,15, catalytic

oxidation15-17, SO2/air (INCO) process18,19. Each of the above processes has their

own benefits and limitations.

Adsorbent-based processes using ion-exchange resins20 and activated carbon4,21-23

have been developed and tested over the past 50 years for the removal of free or

metal-bound cyanide from solution. While these processes may be proven econo-

mic for specific cases, they are yet to find large-scale application directly to gold

plant tailings. At high cyanide or metal tenors, rapid saturation of the adsorbent is

likely to become an issue, resulting in high adsorbent turnovers and inventories.

However, in cases where solid-liquid separation costs or operability are important,

they may find application18.

Knowledge of the adsorption kinetic constitutes the first step in investigation

of the possibility of using an adsorbent for a particular separation task24. Pseudo

first-order and second-order kinetic models extensively used to describe the rate of

adsorption of inorganic and organic pollutants on various adsorbents24-27. In this

work, kinetics of cyanide removal by activated carbons were examined using the

pseudo first-order and second-order kinetic models.

One of the most important objectives of kinetic models is to determine the

remaining concentration of cyanide in solution at various time after addition of

activated carbon. In this investigation in order to show the applicability of adaptive

neuro-fuzzy inference system (ANFIS) for prediction of remaining cyanide concen-

tration in solution by activated carbon, a hybrid grid partitioning ANFIS was used.

Fuzzy logic reduces the possible difficulties in modeling and analysis of complex

data and also, it is appropriate for incorporating the qualitative aspects of human

experience within its mapping rules, which are to provide a way of catching infor-

mation. Artificial neural networks (ANNs) have also been used to identify models

of complex systems because of their high computational rates, robustness and ability

to learn. For the same purpose neuro-fuzzy systems are fuzzy systems which use

ANNs theory in order to determine their properties (fuzzy sets and fuzzy rules) by

processing data samples. A specific approach in neuro-fuzzy is ANFIS that is one

of the first integrated hybrid neuro-fuzzy models28, but has shown promising applica-

bility in modeling nonlinear functions and is faster in convergence when compared

to the other neuro-fuzzy models29.

In this study in addition to comparing the deviation of ANFIS output from the

measured values, a comparison of them with the calculated values of remaining

cyanide concentration obtained from applicable kinetic model is presented.
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EXPERIMENTAL

Analytical grade sodium cyanide (NaCN), silver nitrate (AgNO3), potassium

iodide (KI) and sodium hydroxide (NaOH) were used.

In this study a size fraction of -2.36 +2 mm coconut shell activated carbon,

produced through a steam activation process by Haycarb company, Srilanka, was

employed. The activated carbon was of industrial grade and used in a carbon in

pulp circuit at Mouteh gold processing plant in Iran. Prior to use, the activated

carbon was dried with air. Following acid treatment of carbon with 1 % hydrochloric

acid solution, the sample was thoroughly rinsed with distilled water prior to adding

to cyanide aqueous solution with predetermined initial concentrations.

Adsorption experiments: For measurement of time-dependent uptake of cyanide

by the activated carbon, 1.5 g portion of prepared activated carbon was poured in

2.5 L glass bottles containing 500 mL cyanide aqueous solution with known concen-

tration and pH of 10. The solutions were bottle rolled at a constant rotation of 100 rpm

for 72 h.

Sampling was performed by removing 5 mL aliquots which were then analyzed

for cyanide by titrating against standard silver nitrate solution (0.001 M) in the

presence of potassium iodide (10 g/L in distilled water) as indicator.

Batch kinetic studies: The aqueous samples were taken at preset time intervals

and the concentrations of cyanide were measured. The amount of adsorption at

time t, qt (mg/g), was calculated by:

W

V)CC(
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t

−
= (1)

where C0 and Ct (mg/L) are the liquid-phase concentrations of cyanide at zero time

(initial con.) and t, respectively. V is the volume of the solution (L) and W is the

mass of dry carbon used (g).

The kinetic data were then fitted using both pseudo-first and second-order

models.

Pseudo-first-order kinetic model: The rate constant of adsorption is deter-

mined from the pseudo-first-order equation given by Langergren and Svenska30 as:

ln (qe – qt) = ln qe – k1t (2)

where qe and qt are the amounts of cyanide adsorbed (mg/g) at equilibrium and at

time t (h), respectively and k1 is the adsorption rate constant (h-1).

Pseudo-second-order kinetic model: The pseudo-second-order equation31

based on equilibrium adsorption is expressed as:
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where k2 (g/mg h) is the rate constant of second-order adsorption.

Adaptive neuro-fuzzy inference system (ANFIS): The ANFIS is a multilayer

feed-forward network consisting of nodes and directional links, which combines
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the learning capabilities of a neural network and reasoning capabilities of fuzzy

logic32,33. This hybrid structure of the network can extend the prediction capabilities

of ANFIS beyond artificial neural network (ANN) and fuzzy logic techniques when

they are used alone. Analyzing the mapping relation between the input and output

data, ANFIS can establish the optimal distribution of membership functions using

either a back-propagation gradient descent algorithm alone or in combination with

a least-squares method.

Adaptive neuro-fuzzy inference system uses the fuzzy if-then rules involving

premise and consequent parts of Sugeno-type fuzzy inference system28. To describe

this system, it is simply assumed that the inference system has two inputs x and y

and one output f. A typical rule set with two fuzzy if-then rules for a first-order

Sugeno fuzzy model can be expressed as:

1. If x is A1 and y is B1, then f1 = p1x + q1y + r1

2. If x is A2 and y is B2, then f2 = p2x + q2y + r2

where p1, p2, q1, q2, r1 and r2 are linear parameters in the consequent part and A1, A2,

B1 and B2 are nonlinear parameters.

The corresponding equivalent ANFIS architecture for two input first-order

Sugeno fuzzy model with two rules is shown in Fig. 1. The architecture of the

ANFIS system consists of five layers, namely, the fuzzy layer, product layer, norma-

lized layer, de-fuzzy layer and total output layer. The node functions in the same

layer are of the same function family as described in the following28 (Fig.1).

 

Fig. 1. An ANFIS network structure for a simple FIS

Layer 1: The first layer is called fuzzy layer. The adjustable nodes in this layer

are represented by square nodes and marked by A1, A2, B1 and B2 with x and y

outputs. A1, A2, B1 and B2 are the linguistic labels (small, large, etc.) used in the

fuzzy theory for dividing the membership functions. The node function in this layer

that determines the membership relation between the input and output functions

can be given by:
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O1,i = µAi (x), i = 1,2

O1,j = µBi (y), j = 1,2 (4)

where O1,i and O1,j denote the output functions and µAi and µBj denote the appropriate

membership functions.

Layer 2: This is the product layer and every node is a fixed node marked by a

circle node and labeled by Π. The outputs w1 and w2 are the weight functions of the

next layer. The output of this layer, O2,i, is the product of the input signals and given

by:

O2,i = wi = µAi (x) µBi, (y), i = 1,2 (5)

The output signal of each node, wi, represents the firing strength of a rule.

Layer 3: This is the normalized layer and every node in this layer is a fixed

node, marked by a circle node and labeled by N. The nodes normalize the firing

strength by calculating the ratio of firing strength for this node to the sum of all the

firing strengths, i.e.

2,1i,
ww

w
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21

i
i,3 =

+
== (6)

Layer 4: This is the de-fuzzy layer having adaptive nodes and marked by square

nodes. The node function in this layer is given by a non-fuzzy equation:

2,1i),ryqxp(wfwO iiiiiii,4 =++== (7)

where
iw is the normalized firing strength output from the previous layer and pi, qi

and ri are the parameters set of this node. These parameters are linear and referred

as consequent parameters of this node.

Layer 5: This is the last layer that simply computes the overall system output

as the summation of all incoming signals.

Every node in this layer is a fixed node, marked by circle node and labeled by

S. The node function is given by:
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It is noted that the system output is the weighted sum of the results of the rules.

The number of fuzzy sets is determined by the number of nodes in layer 1. On the

other hand, the dimension of layer 4 determines the number of fuzzy rules empl-

oyed in the architecture that shows the complexity and flexibility of the ANFIS

architecture. When compared to the neural networks, fuzzy rules can be considered

as the equivalent of the neurons.

An ANFIS network can be trained based on supervised learning to reach from

a particular input to a specific target output. In the forward pass of the hybrid algorithm

of the ANFIS, the node outputs go forward until layer 4 and consequent linear

parameters, (pi, qi, ri), are identified by the least-squares method using training

Vol. 22, No. 1 (2010) Adsorption Kinetics of Cyanide by Activated Carbon  275



data28. In the backward pass, the error signals propagate backwards and the premise

nonlinear parameters, (ai, bi, ci), are updated by gradient descent.

Development of ANFIS models: Adaptive neuro-fuzzy inference system

(ANFIS) is powerful model in solving complex problems35. Since ANFIS has the

potential of solving nonlinear problem and can easily achieve the input-output map-

ping, it is perfect to be used for solving the predicting problem. In this work, the

ANFIS model on the basis of grid partitioning algorithm with two inputs (time t,

initial cyanide concentration) and one output (remaining cyanide concentration)

was designed for prediction remaining cyanide concentration at various time after

addition activated carbon. In the grid partitioning method, the domain of each ante-

cedent variable is partitioned into equidistant and identically shaped membership

functions. The total number of fuzzy rules (Stotal) increase exponentially with input

dimension, i.e., Stotal = Mn where n is the input dimension and M is the number of

partitioned fuzzy subsets for each input variable. It is clear that for this type of

partition the number of fuzzy rules will increase exponentially with the number of

input dimension, so the number of rules will be tremendous when the number of

input dimension is large and a lot of computations are needed. The Gaussian member-

ship function defined in eqn. 9 used in the ANFIS model:
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where c and σ are parameters of the membership function, governing the Gaussian

functions accordingly.

Hybrid learning rule is used to train the model according to input/output data

pairs. A hybrid algorithm can be divided to forward pass and a backward pass. The

forward pass of the learning algorithm stop at nodes at layer 4 and the consequent

parameters are identified by least squares method. In the backward pass, the error

signals propagate backward and the premise parameters are undated by gradient

descent. It has been proven that this hybrid algorithm is highly efficient in training

the ANFIS28.

The applicability of the kinetic model to describe the adsorption process was

validated by the normalized standard deviation(NSD %) and average relative deviation

(ARD %) which are defined as:
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where yi
exp and yi

p are target and network output for the ith output and N is the total

number of events considered.

All ANFIS calculations were carried out using Matlab7 mathematical software

with fuzzy logic toolboxes for windows running on a personal computer.

RESULTS AND DISCUSSION

Values of k1 for the pseudo-first-order kinetic model were obtained from the

slopes of the linear plots of ln (qe – qt) versus t (figure not shown). The correlation

coefficient values obtained were relatively small and the experimental qe values did

not agree with the calculated values obtained from the linear plots, as shown in

Table-1. This shows that the adsorption of cyanide onto the activated carbon did

not follow the pseudo-first-order equation.

TABLE-1 
PSEUDO-FIRST-ORDER AND PSEUDO-SECOND-ORDER KINETIC MODEL 

PARAMETERS FOR DIFFERENT INITIAL CYANIDE CONCENTRATIONS AT 30 ºC 

Pseudo-first-order kinetic model Pseudo-second-order kinetic model Initial cyanide 
concentration 

(ppm) 

qe,exp 
(mg/g) qe,cal  (mg/g) k1 (h) R2 qe,cal (mg/g) k2 (g/g h) R2 

102 17.33 14.67 0.135 0.988 18.52 0.019 0.997 

202 23.33 20.57 0.119 0.958 25.64 0.010 0.995 

306 26.67 23.34 0.112 0.991 29.41 0.008 0.997 

396 30.00 26.05 0.101 0.987 33.33 0.006 0.997 

532 33.33 29.87 0.106 0.971 37.04 0.005 0.997 

 

If the pseudo-second-order kinetic model is applicable, the plot of t/qt versus t

should show a linear relationship. qe and k2 can then be determined from the slope

and the intercept of the plot. This procedure is more likely to predict the behaviour

over the whole range of adsorption. The linear plot of t/qt versus t, as shown in Fig.

2, shows a good agreement between the experimental and the calculated qe values

(Table-1). Besides, the correlation coefficients for the second-order kinetic model

were greater than 0.99 for all cyanide concentrations, indicating the applicability

of the second-order kinetic model to describe the adsorption process of cyanide on

the activated carbon which is in agreement with the results of other researchers23.

In this work a hybrid grid partitioning ANFIS by Gaussian membership function

was used in order to prediction of remaining cyanide concentration in solution. The

original data needing for establish ANFIS models obtained from present adsorption

experiments. This data set was randomly divided into two category, training set and

testing set.

In this study, we set as an aim to measure the predictive ability of ANFIS models

by comparison with applicable kinetic model (pseudo second order kinetic model)

for remaining cyanide concentration. Therefore in Table-2, the predicted remaining
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Fig. 2. Pseudo-second-order kinetics for adsorption of cyanide on to granular

activated carbon at 25 ºC

TABLE-2 
AVERAGE RELATIVE DEVIATION (ARD %) AND NORMALIZED STANDARD 

DEVIATION (NSD %) FOR PSEUDO SECOND ORDER KINETIC MODEL AND ANFIS 

Pseudo-second-order kinetic model ANFIS Initial cyanide 
concentration (ppm) ARD (%) NSD (%) ARD (%) NSD (%) 

102 4.38 5.12 2.058 2.50 

202 3.28 5.07 1.027 1.29 

306 1.60 3.19 0.32 0.36 

396 1.05 2.67 0.46 0.23 

532 0.93 2.18 0.17 0.22 

 
cyanide concentrations in solution by ANFIS are compared with those predicted by

using pseudo second order kinetic model. As the results presented in this table

indicates ANFIS is more accurate for predicting of remaining cyanide concentration

in solution, with a good degree of accuracy. Also, the advantage of the ANFIS

compared to applicable kinetic model is estimation speed, simplicity, error free

and capacity to learn from examples.

In Figs. 3-7 the prediction of remaining cyanide concentration in solution by

the artificial neural network model was plotted against the experimental values for the

training and testing set. As shown in these figures, difference between experimental

data and calculated data is very low and it is showing that ANFIS are powerful

tools for predicting of remaining cyanide concentration in solution. Furthermore,

Figs. 3-7 shows calculated remaining cyanide concentration against the experi-

mental values that has been resulted from pseudo second order kinetic model. As

being shown, the predicted results by ANFIS model compared with pseudo second

order kinetic model is closer to experimental values.
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Fig. 3. Calculated remaining cyanide concentration in solution versus experimental

remaining cyanide concentration at 102 mg/L initial cyanide concentration

Fig. 4. Calculated remaining cyanide concentration in solution versus experimental

remaining cyanide concentration at 202 mg/L initial cyanide concentration
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Fig. 5. Calculated remaining cyanide concentration in solution versus experimental

remaining cyanide concentration at 306 mg/L initial cyanide concentration

Fig. 6. Calculated remaining cyanide concentration in solution versus experimental

remaining cyanide concentration at 396 mg/L initial cyanide concentration
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Fig. 7. Calculated remaining cyanide concentration in solution versus experimental

remaining cyanide concentration at 532 mg/L initial cyanide concentration

Conclusion

The present investigation showed that the adsorption kinetics of cyanide from

solution by coconut shell activated carbon follow closely the pseudo-second-order

kinetic model.

ANFIS is capable to predicting the remaining cyanide concentration, with a

high degree of accuracy. Comparing result of ANFIS with the results obtained by

applicable kinetic model indicate that this model is more accurate than pseudo-

second-order kinetic model. The advantage of the ANFIS compared to classical

methods is estimation speed, simplicity and error free.
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