
INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are an impor-
tant class of organic compounds, which usually have two to
six fused benzene rings, with occasional incorporation of
cyclopentene rings. A wide variation of alkyl substituents gives
rise to thousands of different PAHs and many have been identi-
fied in environmental samples. Polycyclic aromatic hydro-
carbons are generally highly toxic and carcinogenic compounds1

and ubiquitous conta-minants of aquatic and atmospheric
ecosystems, where they are present as a result of natural
processes such as forest fires, volcanic emissions, but the
predominant PAH sources in the environment are related to
human activities such as oil spills, burning fossil fuels and
domestic wastes, transport emissions.

Polycyclic aromatic hydrocarbons analysis can be well
accomplished using gas chromatography2-4, gas chromato-
graphy/mass spectrometry (GC-MS)5, high performance liquid
chromatography6 or HPLC- MS7. There has been a lot of contro-
versy over which of the chromatographic techniques, GC or HPLC,
is more favourable. In general, there are some clear advantages
of HPLC over GC and vice versa. Reversed phase and particu-
larly liquid crystal HPLC columns8 are capable of separating
a number of PAHs that are difficult to separate by capillary
GC. Also, the sample preparation procedure is less tedious.

However, many PAHs are thermally stable and exhibit
low polarity and as such suitable for GC analysis. The advan-
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tages of GC separation of PAHs over the HPLC one are better
peak resolution and, when coupled with MS, more reliable
confirmation. Unlike separation of PAHs by isothermal
GC that is somewhat obsolete nowadays, the temperature-
programmed GC has the ability to separate both somewhat
weakly and strongly retained PAHs in the same run.

Computers assisted approach to the optimization of chroma-
tographic separations has been extensively used recently. Thus,
a number of articles on HPLC of PAHs dealt with factorial
design9-11 and simplex9,12-14 methodology, while GC separations
of PAHs were mainly focused on quantitative structure-retention
relationships (QSRRs) studies using multiple linear regression
(MLR)15-19 or artificial neural networks (ANNs)20,21.

However, there has been a general lack of chromatographic
data on isomeric PAHs due to the unavailability of reference
compounds. Thus methods that can predict chromatographic
retention data of PAHs from its structure are important.

In present work, a hybrid genetic algorithm (GA)/MLR
approach was used to model the GC retention index on SE-52
capillary columns of 60 compounds containing unsubstituted
and substituted PAHs, when calculating (DRAGON software22)
theoretical descriptors (independent variables) from the
chemical structure alone.

The experimental values of retention index data (I) of
PAHs, taken from the literature23, were randomly split into a
training set of 20 chemicals (a third of the total set), used to
develop the QSRR model and a validation set of 40 chemicals



(two thirds of the total set), used only for statistical external
validation.

The model was examined for robustness and predictive
ability through both internal and external validation methods.

EXPERIMENTAL

Molecular descriptor calculation and selection: The
structures of the molecules were drawn using Hyperchem 6.03
software24. The final geometries were obtained with the semi
empirical method AM1. All calculations were carried out at the
restricted Hartree-Fock (RHF) level with non-configuration
interaction. The molecular structures were optimized using
the algorithm Polak-Ribiere and a gradient norm limit of 0.001
kcal/Å. The resulted geometry was transferred into the soft-
ware DRAGON version 5.4 22 to calculate 290 descriptors of
the type Geometrical (74), Topological (120) and 2D
Autocorrelations (96). Descriptors with constant or near constant
values inside each group were discarded. For each pair of
correlated descriptors (with a correlation coefficient r ≥ 0.95),
the one showing the highest pair correlation with the other
descriptors was excluded.

The genetic algorithm (GA)25 has been considered
superior to other method of variable selection techniques. So,
variable selection was performed on the training set, using
GA in the Moby Digs version of Todeschini26 by maximizing
the cross-validated explained variance Q2

Loo.
Model development and validation: Multiple linear

regression analysis and variable selection were performed by
package Moby Digs for windows/PC26, using ordinary least
squares regression (OLS) method and, as previously indicated,
GA for variable subset selection (GA-VSS).

The goodness of fit of the calculated model was assessed
by means of the multiple determination coefficient, R2 and
the standard deviation error in calculation (SDEC) defined as
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Cross-validation techniques allow the assessment of
internal predictivity (Q2

LMO cross-validation; bootstrap) in
addition to the robustness of the model (Q2

Loo cross-validation;
Y- scrambling).

Cross-validation by the leave-one-out (Loo) procedure
employs n training sets of n - 1 objects in and predicting each
excluded object in the test set. The cross-validated explained
variance Q2

Loo is defined as:
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where yi and y  are, respectively, the measured and averaged
(over the entire data set) values of the dependent variable;

i/iŷ denotes the response of the i-th object estimated by using
a model obtained without using the i-th object; the summations
run over all compounds in the training set.

The predictive residual sum of squares (PRESS) measures
the dispersion of the predicted values. It is used to define Q2

and the standard deviation error in prediction (SDEP).

PRESS
n

1
SDEP = (3)

A value Q2 > 0.5 is generally regarded as a good result
and a Q2 > 0.9 as excellent27,28.

However, studies have indicated that while Q2 is a necessary
condition for high predictive power in a model, its alone is not
sufficient.

To avoid overestimating the predictive power of the model
the leave-more-out (LMO up to 50 % of perturbation: LMO/
50) procedure (repeated 5000 times in this study) was also
performed. In a typical LMO validation, n objects of the data
set are divided in G cancellation groups of equal size, mj
(= n/G). Based on the value of n, G is generally selected
between 2 and 10. A large number of models are developed
with each of the n-mj objects in the training set and mj objects
in the validation set. For each corresponding model, mj objects
are predicted and  computed (as average value of the number
of validation runs).

In order to evidence the existence of fortuitous correlations,
the randomization test (Y-scrambling)29 was adopted. This test
consists of building a property vector whose components are
the components of the actual property vector, but randomly
permuted in their position. This new property vector is used
as if it was really an experimental one and a QSRR model is
computed in the usual way. This process was repeated 300
times, in order to test the capacity factor of the model to extract
actual structure/retention relationships.

By bootstrap validation technique, the original size of the
data set (n) is preserved for the training set, by the selection of
n objects with repetition; in this way the training set usually
consists of repeated objects and the evaluation set of the objects
left out30. The model is calculated on the training set and
responses are predicted on the evaluation set. All the squared
differences between the true response and the predictive
response of the objects of evaluation set are collected in PRESS.
This procedure of building training sets and evaluation sets is
repeated 5000 times in this study, PRESS are summed and the
average predictive power is calculated.

By using the selected model the values of the response
for the test objects are calculated and the quality of these predic-
tions is defined in terms, of Q2

ext, which is defined as:
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where next and ntr are the number of objects in the external set
(or left out by bootstrap) and the number of training set objects,
respectively.

Other useful parameters are R2, calculated for the validation
chemicals by applying the model developed on the training
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set and external standard deviation error of prediction (SDEPext)
defined as:
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where the sum runs over the test objects (next).
Outlier and influential compounds for the developed

QSRR model: The jacknified residuals (or Studentized
residuals), are the standardized cross-validated residuals. Each
residual is divided by its standard deviation, which is calcu-
lated without the i-th observation. Compounds, in the training
or validation sets, with their standardized residuals greater than
three standard deviation units (3σ) are outliers.

The leverage (hi) value of a chemical in the original variable
space is defined as:

i
1TT

ii x)XX(xh −
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where xi is the descriptor row-vector of the query compound
and X is the n × p matrix of p + 1 model parameter values for
n training set compounds. The superscript T refers to the trans-
pose of the matrix/vector.

The warning leverage value (h*) is defined as 3 (p + 1)/n.
When h value of a compound is lower than h*, the probability
of accordance between predicted and actual values is as high
as that for the compounds in the training set. An influential
chemical, with hi > h*, will reinforce the model if the chemical
is in the training set. But such a chemical in the validation set
and its predicted data may be unreliable. However, this chemi-
cal may not appear to be an outlier because its residuals may
be low.

RESULTS AND DISCUSSION

Application of the GA-VSS for the 20 compounds of the
training set (Table-1) led to several good models for the
prediction of I. The best two dimensional model involved the
gravitational index for the bonded atoms Gb and an 2D
autocorrelation index, the Geary autocorrelation-lag 4/
weighted by atomic van der Waals volumes GATS 4v, these 2
parameters being not very correlated (r = - 0.299). The MLR
analysis equation was obtained as follows:

I = -70.10 (± 18.82) + 36.97 (± 0.44) Gb

+ 36.16 (± 15.60) GATS4v      (7)
n = 20, s = 4.41, R2 (%) = 99.80, F = 3738.18

It is found that gravitational index for the bonded atoms
Gb itself yielded a one-variable equation I = - 29.05 (± 5.26) +
36.61 (± 0.47) Gb with a determination coefficient of R2 (%) =
99.71 and standard deviation s = 4.88 for 20 PAHs. This means
that gravitational index for the bonded atoms (Gb) is an
important descriptor for the influence of molecular structure
on retention behaviour for PAHs. However, a major drawback
of gravitational index for the bonded atoms is its degeneracy,
i.e., isomers obtain identical numerical values. Hence, the
model developed only by employing gravitational index for
the bonded atoms is not accurate enough for PAHs. To improve
the description a second regressor, GATS4v, was added as
shown above in eqn. 7.

Gravitational index for the bonded atoms is an geometrical
descriptor reflecting the mass distribution in a molecule,
defined31 as:
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where mi and mj are the atomic masses of the considered atoms,
rij the corresponding interatomic distances and B the number
of bonds of the molecule. This index is related to the bulk
cohesiveness of the molecule, accounting, simultaneously, for
both atomic masses (volumes) and their distribution within
the molecular space; it is associated to the dispersion and
hydrophobic interactions.

The 2D Auto class descriptors represent the topological
structure of the compounds. The 2D Auto descriptor consi-
dered in this study has its origin in autocorrelation of topo-
logical structure of Geary (GAST 4v)32. The computation of
this descriptor involves the summation of an autocorrelation
function corresponding to a topological distance (i.e., the lag
in the autocorrelation terms) d = 4. At the same time, this descri-
ptor indicates the role of volume in retention mechanism.

All relevant statistical parameters of the proposed model
are reported hereafter:

ntr n valid Q2
 R2 Q2

LMO/50 Q2
boot R2

adj 

20 40 99.73 99.77 99.66 99.67 99.75 
Q2

ext SDEC SDEP SDEPext F s 
99.67 4.07 4.47 4.85 3738.19 4.41 

 
Values of R2 and R2

adj attest the good fitting performances
of the model which, moreover, is very highly significant (great
value of the Fisher parameter F).

The model is robust, the difference between R2 and Q2 is
negligible (0.04 %). Fig. 1 shows a plot contrasting experi-
mental and cross-validated I. As can be seen the point dispersion
is small.
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Fig. 1. Experimental versus cross-validated I

Standard deviation error of prediction is similar to SDEC,
so the model has internal predictivity not too dissimilar from
fitting power. The model demonstrates an excellent stability
in internal validation (difference between Q2

Loo and Q2
LMO/50 is

0.07 %), while bootstrapping confirms the internal predictivity
and stability of the model. SDEPext is a little bit different from
SDEP. The model works slightly worse in external prediction
than in internal prediction.
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TABLE-1 
QSRR RESULTS OBTAINED BY MULTI LINEAR REGRESSION FOR RETENTION INDEX, USING THE VARIABLES Gb AND GATS4v 

ID Object Status Gb GATS4v Y Exp. Y-Pred Hat Std. Err. Pred. 

1 2,3-Dimethylnaphthalene Training 7.335 1.232 243.55 244.9462 0.373 0.3998 
2 3-Methylnaphthalene Training 9.457 1.066 319.46 316.8499 0.076 -0.6156 
3 Benz[a]anthracene Training 11.580 1.119 398.50 397.3075 0.085 -0.2826 
4 5-Methylbenz[a]anthracene Training 12.153 1.087 418.72 417.3765 0.070 -0.3158 
5 12-Methylbenz[a]anthracene Training 12.153 1.111 419.39 418.2065 0.091 -0.2814 
6 7,12-Dimethylbenz[a]anthracene Training 12.726 1.148 443.38 440.2425 0.178 -0.7846 
7 Dibenzo[a,h]anthracene Training 14.275 1.112 495.45 497.1638 0.207 0.4362 
8 1-Methyltriphenylene Training 12.141 0.992 416.32 413.3013 0.128 -0.7327 
9 Fluoranthene Training 10.421 1.066 344.01 353.1941 0.055 2.1414 
10 Pyrene Training 10.415 1.079 351.22 353.0225 0.053 0.4198 
11 4-Methylpyrene Training 10.988 0.969 369.54 370.4094 0.187 0.2186 
12 Cyclopenta[cd]pyrene Training 11.959 1.036 396.54 409.4075 0.070 3.0252 
13 Perylene Training 13.110 0.984 456.22 447.931 0.157 -2.0469 
14 Dibenzo[def,mno]chrysene Training 14.641 0.974 503.89 505.9805 0.235 0.5417 
15 2-Methylnaphthalene Training 6.762 1.085 218.14 218.051 0.220 -0.0229 
16 2,6-Dimethylnaphthalene Training 7.335 1.027 237.58 237.0989 0.247 -0.1257 
17 2,3,6-Trimethylnaphthalene Training 7.908 1.163 263.31 263.1573 0.186 -0.0383 
18 9-Methylphenanthrene Training 9.457 1.097 323.06 317.7565 0.072 -1.2481 
19 2,7-Dimethylphenanthrene Training 10.030 1.022 339.23 336.3969 0.103 -0.6781 
20 Benzo[b]chrysene Training 14.275 1.112 497.66 496.5875 0.207 -0.2730 
21 1-Methylnaphthalene Test 6.762 1.215 221.04 222.6411 0.336 0.4454 
22 1,3-Dimethylnaphthalene Test 7.335 1.061 240.25 238.4132 0.188 -0.4622 
23 1,6-Dimethylnaphthalene Test 7.335 1.129 240.72 240.8039 0.172 0.0209 
24 1,5-Dimethylnaphthalene Test 7.335 1.232 244.98 244.4251 0.357 -0.1569 
25 1,8-Dimethylnaphthalene Test 7.335 1.164 249.52 242.0344 0.207 -1.9053 
26 Phenanthrene Test 8.884 1.137 300.00 298.3587 0.112 -0.3949 
27 Anthracene Test 8.884 1.137 301.69 298.3587 0.112 -0.8015 
28 2-Methylanthracene Test 9.457 1.066 321.57 317.0489 0.075 -1.0656 
29 4-Methylphenanthrene Test 9.457 1.097 323.17 318.1388 0.071 -1.1834 
30 1-Methylphenanthrene Test 9.457 1.158 323.90 320.2834 0.130 -0.8790 
31 1-Methylanthracene Test 9.457 1.158 323.33 320.2834 0.130 -0.7404 
32 9-Methylanthracene Test 9.457 1.188 329.13 321.3381 0.191 -1.9643 
33 9-Ethylphenanthrene Test 10.021 1.110 337.05 339.4494 0.067 0.5631 
34 2-Ethylphenanthrene Test 10.021 1.137 337.50 340.3987 0.094 0.6902 
35 9-Isopropylphenanthrene Test 10.584 1.005 345.78 356.5745 0.113 2.5986 
36 1,8-Dimethylphenanthrene Test 10.030 1.175 346.26 342.0674 0.160 -1.0373 
37 9-n-Propylphenanthrene Test 10.584 1.007 350.30 356.6449 0.110 1.5245 
38 9,10-Dimethyl-3-ethylphenanthrene Test 11.167 1.220 381.85 385.6896 0.310 1.0477 
39 Benzo[c]phenanthrene Test 11.580 1.063 391.39 395.4403 0.054 0.9440 
40 Chrysene Test 11.580 1.119 400.00 397.4091 0.083 -0.6135 
41 11-Methylbenz[a]anthracene Test 12.153 1.134 412.72 419.1229 0.121 1.5483 
42 2-Methylbenz[a]anthracene Test 12.153 1.063 413.78 416.6267 0.063 0.6665 
43 1-Methylbenz [a] anthracene Test 12.153 1.087 414.37 417.4705 0.069 0.7284 
44 6-Methylbenz [a] anthracene Test 12.153 1.087 417.57 417.4705 0.069 -0.0234 
45 3-Methylchrysene Test 12.153 1.134 418.10 419.1229 0.121 0.2473 
46 2-Methylchrysene Test 12.153 1.087 418.80 417.4705 0.069 -0.3124 
47 5-Methylchrysene Test 12.153 1.060 419.68 416.6267 0.063 -0.7149 
48 1,12-Dimethylbenz[a]anthracene Test 12.726 1.090 436.82 438.6569 0.087 0.4358 
49 Picene Test 14.275 1.110 500.00 496.8093 0.199 -0.8082 
50 2-Phenylnaphthalene Test 10.008 1.120 332.59 339.1797 0.072 1.5504 
51 Triphenylene Test 11.580 1.010 400.00 393.4715 0.099 -1.5589 
52 1,3-Dimethyltriphenylene Test 12.726 0.920 432.32 432.891 0.297 0.1544 
53 2-Methylpyrene Test 10.988 1.050 370.15 372.9889 0.059 0.6633 
54 1-Methylpyrene Test 10.988 1.050 373.55 372.9889 0.059 -0.1311 
55 1-Ethylpyrene Test 11.551 1.060 385.35 394.1219 0.055 2.0458 
56 2,7-Dimetylpyrene Test 11.561 1.030 386.34 393.5424 0.072 1.6951 
57 Benzo[e]pyrene Test 13.110 0.980 450.73 449.2339 0.152 -0.3683 
58 Benzo[a]pyrene Test 13.110 1.030 453.44 450.9566 0.097 -0.5924 
59 Benzo[j]fluoranthene Test 13.118 1.020 440.92 450.8305 0.105 2.3753 
60 Benzo[k]fluoranthene Test 13.112 1.070 442.56 452.4017 0.094 2.3440 
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The model was also verified by Y-scrambling. Fig. 2 gath-
ers the randomization test for the optimal QSRR model. The
statistics for the modified retention index vectors are clearly
lower than the real QSRR model and for the major part a result
of Q2 < 0 is obtained. This ensures that a real structure-chroma-
tographic retention relationship has been found out.

-100

-50

0

50

100

0 20 40 60 80 100

R²

Q
²

Fig. 2. Randomization test associated to the previous QSRR model. Circles
represent the randomly ordered retention indices and the square
corresponds to the real retention indices

As shown in Table-1, hi values of all the compounds in
the training and validation sets are lower than the warning
value (h* = 0.45). None of the compounds are particularly
influential in the model space and the training set has great
representativeness. For all the compounds in the training and
validation sets, with the exception of the cyclopenta[cd]pyren,
their standardized residuals (ei std) are smaller than three
standard deviation units (3σ). Thus, in this model there is only
one response outlier (cyclopenta[cd]pyren (12).

Conclusion

In summary, a multivariate linear QSRR model has been
proposed to predict the programmed-temperature retention
index of 60 unsubstituted and substituted polycyclic aromatic
hydrocarbons. The ordinary least squares model is developed
by a genetic algorithm selection of theoretical molecular
descriptors from among a wide set of theoretical molecular
descriptors. The proposed model is stable, robust, with good
fitting and predictive performance. It is predictive for the
chemicals used in the model development (internal validation
on training chemicals) and also for chemicals not used in the
model development (statistical external validation on validation
set chemicals). To have "external" chemicals not used in the
model development, the original data set is randomly split into
a training set of 20 chemicals and a validation set of 40 chemi-
cals. The factors governing chromatographic retention are the
molecular size, as well as dispersion and hydrophobic interac-
tions of molecule with the chromatographic system.
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