
INTRODUCTION

Diesel is a widely used vehicle fuel which needs accurate

quantitative analysis. There are several properties that affect

the quality of diesel such as cetane number, density, total sulfur

and T50 (boiling point at 50 % recovery) etc. However, the

standard measurement methods such as ASTM D-613 and

ASTM D-6890 are expensive, complicated, time consuming

and sometimes pollutive to the environment. For example,

cetane number, one of the most important indices to evaluate

the combustion performance of diesel oil, is measured by

ASTM D-613 method. This method requires a special industry

test engine and operates under standard conditions. The analy-

tical equipment is expensive and needs frequent maintenance

and the analytical procedure is time-consuming. Therefore,

the traditional method is not suitable for fast analysis required

by modern petroleum industries.

Near infrared (NIR) spectroscopy technology is an indirect

analytical method, which has been well developed since the

late 1980s. Near infrared spectroscopy has been successfully

used in the property quantitative analysis and classification of

gasoline1-5, diesel6,7, biodiesel8,9 and alcohol fuel10,11.

In near infrared spectroscopy, multivariate calibration

methods are widely applied in quantitative analysis. Multi-
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variate calibration methods can be divided into two parts i.e.,

linear and non-linear methods. Linear calibration methods

include multiple linear regression (MLR), principal compo-

nent regression (PCR), partial least square (PLS) regression,

etc. and non-linear calibration methods include standard

support vector machine (SVM)12, least square support vector

machine (LSSVM)13,14, artificial neural network (ANN)15,16,

etc.

Linear and non-linear calibration methods have different

features. In linear calibration methods, model training and

parameter optimization are relatively easy and the model struc-

ture is simple. However, when dealing with strong non-linear

relationship between instrument responses and predicted prop-

erties, linear model cannot predict accurately. In order to

improve model performance, local modeling approach can

sometimes be used, but it is still unsatisfactory if there are few

training samples in the neighbor of the test sample. Non-

linear calibration methods can overcome the above problem,

which have been widely used to build near infrared calibration

models. Least square support vector machine is one of the

most commonly used non-linear calibration methods in recent

years, because it has better prediction performances than

artificial neural network and costs little calculation than

standard support vector machine.



In general, there are strong non-linear relationship

between the near infrared spectral data for a set of samples

and their properties, so LSSVM can directly be used to build

the calibration model. This paper is to compare three kinds of

LSSVM based calibration methods in diesel property NIR

analysis, which are regular LSSVM, LSSVM with feature

extraction by PCA and PLS. The above LSSVM based calibra-

tion methods as well as PLS are employed to build models

with the calibration samples and tested with the validation

samples. Experimental results show that the LSSVM with PLS

feature extraction presents the best performances in all of the

calibration methods.

Theory

Least square support vector machine (LS-SVM): Given

a calibration set of N data points ,}y,x{ N
1kkk = , where m

k Rx ∈

is the regression vector and Ryk ∈  is the output. It can be

constructed to estimate the unknown function between the

regression vector and output as follow form:

b)x(wy T +ϕ= (1)

where the vector w and the constant b are the parameters to be

identified, ϕ(x) is a non-linear function which map the input

space Rm to a higher dimension feature space. According to

the structural risk minimization principle, we can define

optimization problem as follows:
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where ek is the error between the actual output and the predic-

tive output of the kth data. The Lagrangian function could be

established

 ∑
=

−++ϕα−=α

N

1k

kkk
T

k }yeb)x(w{)e,b,w(J),e,b,w(L  (4)

where N,,1k,Rk …=∈α  are Lagrangian multipliers. The

solution of α and b could be given by computing following

equations:
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the LSSVM model can be given by

∑
=
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where N,,1i),x,x(K i …=  is any kernel function satisfying

the Mercer condition.

RBF kernel function is one of the most commonly used

kernel function, it can be expressed as
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where σ2 is the width parameter which controls the kernel

function radial scope.

Since σ2 changes too much when dealing with different

calibration samples, the following RBF kernel function is

proposed in this paper,
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where trainx  is the center of the calibration subset samples.

Least square support vector machine with feature extrac-

tion by principal component analysis and partial least

square: Mostly, the spectral data is with high-dimension. The

spectral dimension should be reduced by feature extraction,

not only because dimension reduction can decrease the compu-

tation time, but also because feature extraction can eliminate

noise information and improve model prediction accuracy. Two

feature extraction methods, PCA and PLS, are usually applied

in LSSVM model. For simplicity, the resulting models are

named PCA-LSSVM and PLS-LSSVM17. Their detail structures

are shown in Fig. 1, where Xtrain is the instrument response

matrix of calibration subset samples, Ytrain is their predicted

property vector, Ttrain is the principal component matrix of Xtrain,

Ptrain is the loading matrix of Xtrain, Wtrain is the correlation coeffi-

cient matrix of Xtrain and Ytrain, Xtest is the instrument responses of

a validation sample, Ttest is the principal component vector of

Xtest and Ypredict is the property prediction of the validation sample.

In the PCA method, the PCA score vector of the validation

sample spectral data is firstly calculated and then fed to the

LSSVM model. Since the PCA score contains only the spectral

information, the correlation between the PCA score and the

predicted property is not strong. In the PLS method, PLS score

is used as the input of LSSVM model instead of PCA score.

Partial least square score contains both of the spectral infor-

mation and the predicted property information, so it has strong

correlation with the predicted property.

Suppose Xtrain is an N × M matrix, Ytrain is an N × 1 vector,

N is the number of calibration samples, M is the dimension of

spectral data and f is the factor number of PCA and PLS feature,

then the main processes of PLS-LSSVM and PCA-LSSVM

can be expressed as follows.

Partial least square-least square support vector machine

modeling and prediction algorithm: Step-1: Obtain the

principal component matrix Ttrain, the loading matrix Ptrain and

the correlation coefficient matrix Wtrain by applying PLS1

algorithm. Step-2: Calculate the LSSVM model coefficient α

and b in eqn. 7 by Ttrain and Ytrain. Step-3: For a validation

sample with the spectrum Xtest, compute Ttest and Ypredict by the

follow equations
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T
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where Ttrain is the kth row of Ttrain.
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Principal component analysis-least square support

vector machine modeling and prediction algorithm: Step-

1: Obtain the principal component matrix Ttrain, the loading

matrix Ptrain by applying PCA algorithm. Step-2: Calculate the

LSSVM model coefficient α and b in eqn. 7 by Ttrain and Ytrain.

Step-3: For a validation sample with the spectrum Xtest,

compute Ttest and Ypredict by the follow equations

        ,traintesttest PXT =

∑
=

+α=

N

1k

testtrainkprodict b)T),k(T(KY (12)

where Ttrain is the kth row of Ttrain.

EXPERIMENTAL

A group of 39 diesel samples were obtained from a refinery

in China. The diesel properties include calculated cetane index,

density, T50 (boiling point at 50 % recovery, ºC) and total

sulfur content and their actual values were measured by ASTM

reference methods.

The NIR spectra were obtained by a BTC261E spectro-

meter (B &WTEK, USA) over a wavelength range of 900-

1700 nm. The nominal spectral resolution is 1.5 nm and the

cell material is quartz (10 mm optical path). The dark spectra

and the reference spectra are obtained first. Both of the dark

and reference spectrums were measured 20 times. Their average

spectra are used to calculate the absorbance spectra of samples.

Each sample is scanned 20 times with 2 m integral time and

the average stands for its spectrum.

Spectral preprocessing: The original absorbance spectra

should be preprocessed to improve the signal noise ratio (SNR).

In this case, the following preprocessing steps are used. Firstly,

the absorbance spectra in the wavelength range between 1000

and 1600 nm are selected. Secondly, Savitzky-Golay convo-

lution method18 is used to obtain the second derivative spectra

and the polynomial filter width is 45 nm. At last, the second

derivative spectra are calculated by standard normal variation

(SNV)19 approach. The spectra before and after the prepro-

cessing are shown in Fig. 2.

Calibration subset samples selection and model evalu-

ation criterion: All 39 samples are divided into two subsets:

the calibration subset and the validation subset. In order to

ensure that the calibration subset has the similar range and

distribution of reference value as the validation subset, all

samples are sorted by the reference value, 29 samples are

selected at equal intervals to be calibration subset and the

remaining 10 samples to be validation subset.

In order to compare different calibration models, root

mean squared error of prediction (RMSEP) and the correlation

coefficient (R2) are chosen to evaluate model performances.

The RMSEP and R2 are defined as follows:
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where y(k) and yp(k) represent the actual value and predictive

value of the kth sample, np is the number of the validation

subset samples, y  is the average value of y(k) in the validation

subset.

Software: The software platform of the experiment in

this paper is Matlab 7.5. It works on a PC computer with 1.80

GHz Intel processor and Windows XP operation system. All

the programs used in this paper are written by us.

RESULTS AND DISCUSSION

To compare the prediction results, we apply PLS, LSSVM,

PCA-LSSVM and PLS-LSSVM to build calibration models

with the calibration subset samples, respectively and then

evaluate these models with the validation subset samples. The

kernel function of LSSVM, PCA-LSSVM and PLS-LSSVM

is the improved RBF function defined in eqn. 9.

The influences of the model parameters on the calibration

models are shown in Figs. 3-6. The standard error of leave-

one-out cross-validation (SECV) is introduced as the evaluation

criterion. It is found that all of the calibration model parameters

are interacted with each others, we chose those parameters
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Fig. 1. Structures of principal component analysis-least square support vector machine and partial least square-least square support vector machine
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Fig. 2. (a) Original absorbance spectra, (b) spectra after wavelength

selection, (c) second derivative spectra and (d) spectra treated by

SNV Fig. 3. Influence of parameters on NIR cetane models
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Fig. 4. Influence of parameters on NIR density models

 

 

 Fig. 5. Influence of parameters on NIR total sulfur models
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Fig. 6. Influence of parameters on NIR T50 models

which make the SECV of calibration models be relatively low

and stable. The optimized model parameters are shown in

Table-1.

TABLE-1 

FOUR CALIBRATION MODEL PARAMETERS 

PLS LSSVM PCA-LSSVM PLS-LSSVM Diesel 
property f y σ2 f y σ2 f y σ2 

Calculated 
cetane index 

10 50 4 13 15 7 10 18 40 

Density 
(kg/m3) 

11 500 42 11 300 17 11 500 10 

Total sulfur 
(%, w/w) 

16 500 2 7 30 1 5 200 1 

T50 (ºC) 10 300 12 14 500 7 10 500 20 

 
Table-2 shows the R2 and the SEP of four calibration

methods and the scatter diagrams of real and predictive values

of diesel predicted properties are shown in Figs. 7-10, respec-

tively. Results show that PLS-LSSVM performs best in all of

the four models. When predicting density and T50, PLS and

PLS-LSSVM models present better performances than

LSSVM and PCA-LSSVM models, however, when predicting

cetane and sulfur, all three LSSVM-based models perform

better than PLS model, especially PLS-LSSVM model. This

is because that the NIR spectra of diesel have strong linearity

with its density and T50 properties and have serious non-

linearity with the cetane and sulfur properties. Partial least

square-least square support vector machine combines linear

and non-linear calibration model. The linear part is to enhance

the correlation coefficients of the NIR spectra and the predicted

properties and the non-linear part is to find the best fitting

function. Therefore, it can be concluded that PLS-LSSVM

calibration model performs well in both of the linear and non-

linear cases.

 
TABLE-2 

DIESEL PROPERTIES PREDICTED BY FOUR CALIBRATION MODELS 

PLS LSSVM PCA-LSSVM PLS-LSSVM 
Diesel property 

R2 RMSEP R2 RMSEP R2 RMSEP R2 RMSEP 

Calculated cetane index 0.893 0.68 0.944 0.49 0.921 0.58 0.953 0.45 

Density (kg/m3) 0.923 3.22 0.807 5.09 0.766 5.60 0.924 3.19 

Total sulfur (%, w/w) 0.782 0.1392 0.897 0.0959 0.947 0.0688 0.974 0.0482 

T50 (ºC) 0.961 3.60 0.845 7.16 0.832 7.45 0.954 3.90 
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Fig. 7. Scatter plots of real and predicted cetane value (a) PLS (b) LSSVM

(c) PCA-LSSVM (d) PLS-LSSVM

Conclusion

In this work, we have compared three LSSVM based cali-

bration methods and PLS by building NIR calibration model

to predict diesel properties. Experimental results show that

the LSSVM with PLS feature extraction presents the best

performances in all of the calibration methods. To improve

the correlation coefficient between the predicted properties

and NIR spectra, it is very useful to introduce feature extraction

even for non-linear calibration methods

 

 

Fig. 8. Scatter plots of real and predicted density value (a) PLS (b) LSSVM

(c) PCA-LSSVM (d) PLS-LSSVM
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Fig. 9. Scatter plots of real and predicted total sulfur value (a) PLS (b)

LSSVM (c) PCA-LSSVM (d) PLS-LSSVM

Fig. 10. Scatter plots of real and predicted T50 value (a) PLS (b) LSSVM (c)

PCA-LSSVM (d) PLS-LSSVM
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