
INTRODUCTION

In the CNS, L-glutamate is one of the major excitatory
neurotransmitters and mediates its actions through activation
of both ionotropic and metabotropic receptor families1.
mGluRs belong to a large subfamily of GPCRs2. During the
molecular cloning it has revealed that there are eight distinct
subtypes of mGluRs called mGluR1-mGluR8, which can be
divided into three groups based on the sequence similarities,
agonist profiles and preferential signal transduction pathways
activated in heterologous systems2. Group I mGluRs (mGluR1
and mGluR5) are coupled to the phospholipase C signal trans-
duction pathway, while group II (mGluR2 and mGluR3) and
group III (mGluR4, mGluR6, mGluR7 and mGluR8) mGluRs
are negatively coupled to adenylate cycase activity3. In all of
these mGluRs excessive activation of mGluR5 has been impli-
cated in a number of CNS disorders such as the pain, anxiety,
depression, drug dependence and mental retardation4. Actually,
mGluR5 may play a role in the pathophysiology and/or
pharmacotherapy of schizophrenia and researches reveal the
enhancement of mGluR5 function may produce antipsychotic
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In recent years, interest has been paid in development of compounds with high biological activity for metabotropic glutamate receptors
(mGluRs), an interesting therapeutic target in the treatment of cocaine seeking behaviour. In the present work, based on a data set of 84
collected phenylethynyl-pyrrolo[1,2-a]pyrazine mGluR5 antagonists with diverse kinds of structures, a variety of in silico modeling
approaches including comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA) were carried out
to reveal the requisite 3D structural features for activity. Present results show that both the optimal ligand-based CoMFA (Q2 = 0.53, R2

ncv

= 0.92, R2
pre = 0.80, SEE = 0.26, SEP = 0.44) and CoMSIA (Q2 = 0.51, R2

ncv = 0.85, R2
pre = 0.80, SEE = 0.36, SEP = 0.42) models are

reliable with proper predictive capacity. In addition, the analysis about the CoMFA and CoMSIA contour maps shows that: (1) Electrop-
ositive groups in Ar substituent are beneficial to enhance the activity; (2) R substituent with HB acceptor also leads to high activity; (3)
Bulky R and Ar substituents are not favoured in mGluR5; (4) R substituent with hydrophilic group can improve the biological activity. All
these results might provide information for better understanding of the mechanism of antagonism and thus be helpful in design of new
potent mGluR5 antagonists.

Key Words: 3D-QSAR, mGluR5, Antagonist, CoMFA, CoMSIA.

effects5. Some other studies reveal that mGluR5 is also involved
in the spatial learning and memory in mice model6 as well as
the therapeutic potential for drug addictions7. Therefore, as a
potential drug interaction target the mGluR5 is very attractive
for research in curing a variety of CNS disorders.

During the last several years in order to develop pharmaco-
therapies for treatment of the CNS disorders, great efforts have
been directed toward the discovery and development of strong
mGluR5 antagonists. In 1999, MPEP, the first potent, selective
and systemically active mGluR5 receptor antagonist (Fig. 1A)
was synthesized8. The molecular structure can be divided into
three different molecular segments. Part I is a 6-methyl-pyri-
dine ring, part III is a benzene, with part II as a linker between
parts I and III. Using MPEP as a template, a number of novel
and selective mGluR5 antagonists were synthesized, with most
of the structural modifications performed on above three
regions. For example, to reveal the structure-activity relation-
ships for part II, a series of pyridinyl-alkynes as the mGluR5
antagonists were sythesized and studied (Fig. 1B)9. Some
researchers also changed part I region to some other hetero-
cyclic substituents and part III to various aryl rings hoping to
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get more powerful mGluR5 antagonists (Fig. 1C-D)10-12. Up
to date, mGluR5 as one of the Glu receptors is evidently an
increasingly interesting and challenging research area13.

CADD has been generally accepted and widely applied
in the area of modern drug discovery and design for its high
efficiency in the design of new compounds and optimization
of lead chemicals, thus saving both time and economic costs
in the large-scale experimental synthesis and biological tests14.
QSARs as one of the typical discipline in the area of CADD
have been applied widely throughout the world, like in the
studies of catechol-o-methyltransferase inhibitors15, to
prioritise untested chemicals for more intensive and costly
experimental evaluations16. QSARs attempt to model complex
non-linear relationships between the chemical and physical
properties of molecules and their biological activity and
modern QSAR techniques employ advanced 2D molecular
finger-prints and 3D molecular descriptors coupled with
machine learning17. However, despite the extensive applications
of QSAR study in biological field, up to now, there is no 3D-
QSAR study on mGluR5 antagonists.

Recently, based on MPEP, a new and up-to-now the largest
group of 84 fused phenylethynyl-pyrrolo[1,2-a]pyrazine as
selective and potent mGluR5 antagonist were reported18,
containing five similar skeleton types (A-E) (Tables 1-3).
Compared with compounds B-D in Fig. 1, these new mGluR5
antagonists are different because they not only have a pyrrolo-
[1,2-a]pyrazine substituent in part I, but also possess more
systematic substituents in the aryl ring of part III. Therefore,
the in silico study on these specific series of compounds may
aid in the identification of their requisite structural features
for mGluR5 antagonists and thus to explore the possible
interaction mechanisms. Thus, in the present work, a combina-
tional computational study on these new fused phenylethynyl-
pyrrolo[1,2-a]pyrazine compounds was carried out using the
CoMFA, CoMSIA methods. As far as we know, this work
provides the first 3D-QSAR analysis for mGluR5 antagonists,
which we hope might be helpful for design and screening of
novel and potent mGluR5 antagonists.

EXPERIMENTAL

Compounds and activity: A total of 105 phenylethynyl-
pyrrolo[1,2-a]pyrazine derivatives prepared as the mGluR5
antagonists18 were collected in this study, with their in vitro

inhibitory concentrations (IC50) of the molecules against
mGluR5 converted into corresponding pIC50 (-log IC50) values
and employed as the biological activity (Tables 1 and 2). This
data set contains 21 compounds with uncertain pIC50 values
and thus can not be used in the building of 3D-QSAR models.
So we deleted them. In addition, due to with no common sub-
structure (Fig. 2, depicted in red), molecules 1 and 2 were
unable to be aligned to the others and were deleted from the
data set during the molecular alignment process. Finally in a
ratio of about 3:1, all 82 compounds with defined pIC50 values
were divided into a training set of 61 molecules for generating
the subsequent QSAR model and a test set of 21 molecules
for evaluating the predictive quality of the model. Compounds
belonging to the test set were selected in such a way that the
structural diversity and wide range of activity in the data set
were ensured being included. The pIC50 values are considered
as dependent variables in the CoMFA and CoMSIA analyses.
Energy minimization was performed on SYBYL 6.9 package
(Tripos Associates, St. Louis, MO), tripos force field was used
and conjugate gradient method with convergence criterion was
set as 0.05 kcal/mol in this process. Partial atomic charges
were calculated by the Gasteiger-Huckel method19.

Conformational sampling and alignment: One of the
most important adjustable parameters in CoMFA and CoMSIA
is the relative alignment of all the compounds to one another
so that they have a comparable conformation and a similar
orientation of pharmacophoric groups in space20. It is prefe-
rable to choose an alignment which maintains the bioactive
conformation21. In the present study, compound 68 had the
highest pIC50 values (pIC50 = 9.4) and thus was chosen as the
template molecule. And the rest molecules in the data set were
aligned to the template by the ALIGN DATABASE command
in SYBYL based on an atom-by-atom superimposition

Fig. 1. Molecular structures of the mGluR5 antagonists. (A) Structures of MPEP. (B) A sample of mGluR5 antagonists with structural modifications in part
II. (C) and (D) samples of mGluR5 antagonists with changes in parts I and III8-11
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TABLE-1 
STRUCTURE OF COMPOUNDS WITH SKELETON TYPE A IN THE DATA SET 

N

N

R1

R

Ar

A

 
No. R1 R Ar pIC50 No. R1 R Ar pIC50 
3x,m CH3 H Ph 8.6 61 Me CF3 3-(1-Methyl-1H-pyrazol-4-

yl) phenyl 
<4.9 

4x,m CH3 H 3-Me-Ph 9.4 62 Me CF3 3-(3,5-Dimethyl-4-
isoxazolyl) phenyl 

<4.9 

5 CH3 H 4-F-Ph 7.8 63 Me CF3 3-(3-Furanyl)phenyl 5.0 
6 CH3 H 4-Cl-Ph 6.2 64 Me CF3 3-(3-Thienyl)phenyl 5.3 
7 CH3 H 4-Br-Ph <4.9 65x Me CN 2-F-phenyl 8.5 
8 CH3 H 3-OH-Ph 6.5 66 Me CN 3-F-phenyl 9.1 
9 CH3 H 5-Pyrimidinyl 5.7 67 Me CN 3-CF3-phenyl 7.8 

10 CH3 H 4-Isoquinolinyl <4.9 68 Me CN 3-Thienyl 9.4 
11 H CF3 Ph 6.8 69 Me COOEt 3-Cl-phenyl 7.7 
12x CH3 CF3 Ph 7.4 70 Me COOEt 3-CF3-phenyl 6.7 
13x CH3 CN Ph 8.9 71 Me COOEt 3-CN-phenyl 8.5 
14 CH3 (4-Methyl-1-

piperazinyl) 
carbonyl 

Ph 7.0 72 Me COOEt 4-CN-phenyl <4.8 

15 CH3 1-Pyrrolidinyl 
carbonyl 

Ph 7.1 73 Me COOEt 4-CF3-phenyl <4.8 

16x CH3 4-Morpholinyl 
carbonyl 

Ph 7.8 74 Me COOEt 4-Cl-phenyl <4.8 

17 CH3 CH3 Ph 7.3 75 Me COOEt 4-F-phenyl 6.4 
18 CH3 COOEt Ph 8.0 76 Me COOEt 2-F-phenyl 6.5 
19 CH3 3-Methyl-1,2,4-

oxadiazol-5-yl 
Ph 8.2 77 Me COOEt 3-Thienyl 8.1 

20 CH3 CONHMe Ph 6.9 78x Me COOEt 3-Pyridyl 5.8 
21x CH3 1-Piperidinyl 

methyl 
Ph 6.8 79 Me CONH2 2-F-phenyl 6.3 

22 CH3 (4-Methyl-1-
piperazinyl) 

methyl 

Ph 6.3 80 Me CONH2 3-CF3-phenyl 7.1 

23 CH3 4-Acetyl-1-
piperazinyl) 

methyl 

Ph 6.5 81x Me CONH2 3-Thienyl 7.3 

24 CH3 (3-Oxo-1-
piperazinyl) 

methyl 

Ph 6.7 82 Me CONHMe 2-F-phenyl 5.8 

25 Me Me 4-CF3 <4.8 83 Me CONHMe 3-F-phenyl 7.0 
26 Me Me 4-Cl <5.4 84 Me CONHMe 3-CF3-phenyl 6.7 
27 Me Me 4-F 6.4 85 Me CONHMe 3-Thienyl 7.3 
28 Me Me 4-CN <4.8 86x Me 1-

Pyrrolidinyl 
carbonyl 

2-F-phenyl 6.6 

29 Me Me 3-CF3 6.8 87 Me 1-
Pyrrolidinyl 

carbonyl 

3-F-phenyl 7.7 

30x Me Me 3-Pyridyl 5.7 88 Me 1-
Pyrrolidinyl 

carbonyl 

3-CF3-phenyl 6.8 

31 Me Me 3-Thienyl 7.2 89x Me 1-
Pyrrolidinyl 

carbonyl 

3-Thienyl 7.7 

52 Me CF3 4-Pyridyl 7.1 90 Me 4-
Morpholinyl 

carbonyl 

2-F-phenyl 6.9 

53 Me CF3 2-Pyridyl 7.3 91 Me 4-
Morpholinyl 

carbonyl 

3-F-phenyl 7.7 

54 Me CF3 3-Pyridyl 6.3 92x Me 4-
Morpholinyl 

carbonyl 

3-CF3-phenyl 7.9 
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55y Me CF3 1-Methyl-
imidazol-5-yl 

<4.9 93 Me 4-
Morpholinyl 

carbonyl 

3-Thienyl 8.0 

56 Me CF3 3-Furyl 7.3 94 Me (4-Methyl-1-
piperazinyl) 

carbonyl 

2-F-phenyl 5.9 

57x Me CF3 2-Thienyl 7.2 95x Me (4-Methyl-1-
piperazinyl) 

carbonyl 

3-F-phenyl 6.7 

58x, Me CF3 3-Thienyl 8.0 96 Me (4-Methyl-1-
piperazinyl) 

carbonyl 

3-CF3-phenyl 6.6 

59 Me CF3 3-(1H-Pyrazol-4-
yl)phenyl 

<4.9 97 Me (4-Methyl-1-
piperazinyl) 

carbonyl 

3-Thienyl 6.8 

60x Me CF3 3-(4-
Isoxazolyl)phenyl 

6.1      

xCompounds belonged to the test set. mOutliers. 

 
TABLE-2 

STRUCTURE OF COMPOUNDS WITH SKELETON TYPES B-E IN THE DATA SET 

N

N

Me

F3C

R

B

    

N

N

Me

R

C

S

     

N

D

     

N

E

F

NH2

 
No. Skeleton R pIC50 

32 B 3-OMe 7.1 

33x B 3-CF3 6.5 

34 B 3-F 7.8 

35 B 3-Cl 7.0 

36 B 3-Br 7.6 

37 B 3-CN 7.9 

38 B 3-NHSO2CH3 <4.9 

39 B 3-NHAc 6.1 

40 B 3-COOH <4.9 

41 B 3-COO-t-Bu <4.9 

42 B 2-F 6.9 

43 B 2-Cl 5.3 

44 B 2-CF3 <4.8 

45 B 2,4-bis F <4.8 

46 B 4-F 7.0 

47 B 4-Cl 5.7 

48 B 4-CF3 <4.8 

49 B 4-CN <4.8 

50 B 4-NMe2(CH3)2 <4.8 

51 B 4-NHSO2CH3 <4.8 

98 C (1R,4S)-2-azabicyclo[2.2.1]hept-2-yl carbonyl 6.2 

99 C [(1S,4S)-5-methyl-2,5-diazabicyclo[2.2.1]hept-2-yl] carbonyl 5.4 

100x, m C (2,2-Dimethyl-1-pyrrolidinyl) carbonyl 5.9 

101 C (3,3-Difluoro-1-pyrrolidinyl) carbonyl 6.9 

102 C (2,5-Dimethyl-1-pyrrolidinyl) carbonyl 6.4 

103x,m C [(2R,6S)-2,6-dimethyl-4-morpholinyl] carbonyl 6.5 

104 C (2-Methyl-1-pyrrolidinyl) carbonyl 7.4 

105 C (2-Methyl-1-piperidinyl) carbonyl 7.0 

1 D – 8.0 

2 E – 7.5 
xCompounds belonged to the test set. mOutliers. 
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TABLE-3 
OBSERVED AND CoMFA/CoMSIA PREDICTED mGluR5 INHIBITORY ACTIVITY (pIC50 VALUE) 

CoMSIA CoMFA 
No. Observed activity 

Predicted Residual Predicted Residual 
3x,m 8.6 7.301 1.299 6.985 1.615 
4x,m 9.4 6.678 2.722 6.669 2.731 
5 7.8 7.033 0.767 7.122 0.678 
6 6.2 6.576 -0.376 5.882 0.318 
8 6.5 6.936 -0.436 6.822 -0.322 
9 5.7 5.668 0.032 5.978 -0.278 

11 6.8 6.971 -0.171 6.871 -0.071 
12x 7.4 6.925 0.475 7.218 0.182 
13x 8.9 8.901 -0.001 8.824 0.076 
14 7.0 6.647 0.353 6.824 0.176 
15 7.1 7.245 -0.145 7.501 -0.401 
16x 7.8 7.774 0.026 7.493 0.307 
17 7.3 7.249 0.051 7.021 0.279 
18 8.0 7.622 0.378 7.589 0.411 
19 8.2 7.854 0.346 8.343 -0.143 
20 6.9 6.697 0.203 7.188 -0.288 
21x 6.8 7.033 -0.233 6.204 0.596 
22 6.3 6.41 -0.11 6.306 -0.006 
23 6.5 6.823 -0.323 6.455 0.045 
24 6.7 6.884 -0.184 6.615 0.085 
27 6.4 6.756 -0.356 6.284 0.116 
29 6.8 6.765 0.035 6.672 0.128 
30x 5.7 6.436 -0.736 6.159 -0.459 
31 7.2 7.454 -0.254 7.53 -0.33 
32 7.1 6.825 0.275 7.044 0.056 
33x 6.5 6.58 -0.08 6.372 0.128 
34 7.8 7.171 0.629 7.459 0.341 
35 7.0 7.401 -0.401 7.464 -0.464 
36 7.6 7.592 0.008 7.221 0.379 
37 7.9 7.717 0.183 7.897 0.003 
39 6.1 5.948 0.152 5.934 0.166 
42 6.9 6.149 0.751 6.673 0.227 
43 5.3 5.92 -0.62 6.046 -0.746 
46x 7.0 6.683 0.317 7.194 -0.194 
47 5.7 6.21 -0.51 5.921 -0.221 
52 7.1 7.145 -0.045 7.216 -0.116 
53 7.3 7.517 -0.217 7.404 -0.104 
54 6.3 6.161 0.139 6.249 0.051 
56 7.3 7.333 -0.033 7.194 0.106 
57x 7.2 6.767 0.433 6.597 0.603 
58x 8 7.198 0.802 7.311 0.689 
60x 6.1 5.975 0.125 5.382 0.718 
63 5.0 5.062 -0.062 5.187 -0.187 
64 5.3 4.822 0.478 5.485 -0.185 
65x 8.5 8.027 0.473 8.101 0.399 
66 9.1 8.907 0.193 8.839 0.261 
67 7.8 8.414 -0.614 8.215 -0.415 
68 9.4 8.973 0.427 9.153 0.247 
69 7.7 7.93 -0.23 7.581 0.119 
70 6.7 7.105 -0.405 6.857 -0.157 
71 8.5 8.678 -0.178 8.505 -0.005 
75 6.4 6.981 -0.581 6.502 -0.102 
76 6.5 6.529 -0.029 6.171 0.329 
77 8.1 7.845 0.255 8.226 -0.126 
78x 5.8 6.571 -0.771 5.692 0.108 
79 6.3 6.109 0.191 6.434 -0.134 
80 7.1 6.565 0.535 6.784 0.316 
81x 7.3 7.113 0.187 7.481 -0.181 
82 5.8 6.133 -0.333 5.987 -0.187 
83 7.0 7.088 -0.088 7.021 -0.021 
84 6.7 6.568 0.132 6.507 0.193 
85 7.3 7.013 0.287 7.407 -0.107 
86x 6.6 6.25 0.35 7.215 -0.615 
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Fig. 2. Molecular alignment of compounds in the whole data set. (A)
Common substructure of the molecules is shown in red based on
template compound 68. (B) ligand-based alignment of all the
compounds. Different colours represent different kind of atoms:
white for C, blue for N, red for O, green for F, yellow for S and
cyan for H, respectively.

principle. Fig. 2A shows the common substructure depicted
in red colour and Fig. 2B shows the resulted ligand-based align-
ment model.

CoMFA and CoMSIA field calculation: CoMFA22 and
CoMSIA23 were performed to build the models in order to
reveal the relationship between 3D structural features and
activity by employing the standard option of SYBYL. In CoMFA
method, the superimposed molecules are kept in a 3D grid
that steric (vdW interaction) and electrostatic (Coulombic

values with a 1/r distance-dependent dielectric function)
interactions were calculated using the Tripos force field with
a distance-dependent dielectric constant at all interactions in
a regularly spaced (2 Å) grid taking a sp3 carbon atom as steric
probe and a + 1 charge as electrostatic probe. The cut off value
was 30 kcal/mol (default cutoff) for the Lennard-Jones and
Coulomb-type potential and a constant dielectric function. The
probe atom was placed at each lattice point and their steric
and electrostatic interactions with each atom in the molecule
were computed using the CoMFA standard scaling.

Compared with CoMFA method which only calculates
the steric and electrostatic interactions, CoMSIA approach not
only calculates the steric, electrostatic interactions, but also
calculates the hydrophobic, HB donor and HB acceptor inter-
actions. The basic assumption of CoMSIA is that a suitable
sampling of the steric, electrostatic, hydrophobic and HB
acceptor interactions generated around a set of aligned molecules
with a probe atom might provide all the important features for
understanding their biological activities and that the changes
in binding affinities of the ligands are related to changes in the
molecular properties24. CoMSIA similarity index descriptors
were derived using the same lattice boxes as those used in
CoMFA calculations. In CoMSIA, the steric indices are related
to the third power of the atomic radii, the electrostatic descrip-
tors are derived from atomic partial charges, the hydrophobic
fields are derived from atom-based parameters developed by
Viswanadhan and co-workers and the hydrogen bond donor
and acceptor indices are obtained from a rule-based method
derived from experimental values25. A Gaussian function was
used to evaluate the mutual distance between the probe atom
and each molecule atom. CoMSIA similarity indices (AF) for
a molecule j with atom i at a grid point q are calculated by
eqn. 1 as follows:

∑ α−

ωω−=

2
iqr

ikk,probe
q

k,F e)j(A (1)

where ωprobe,k is the probe atom with radius 1 Å, charge +1,
hydrophobicity +1, hydrogen bond donating +1 and hydrogen
bond accepting +1. ωik is the actual value of the physico-
chemical property k of atom i. riq is the mutual distance between
the probe atom at grid point q and item i of the test molecule.

87 7.7 7.355 0.345 7.868 -0.168 
88 6.8 6.759 0.041 6.823 -0.023 
89x 7.7 7.325 0.375 7.578 0.122 
90 6.9 6.897 0.003 6.779 0.121 
91 7.7 7.831 -0.131 7.714 -0.014 
92x 7.9 7.512 0.388 7.113 0.787 
93 8.0 8.029 -0.029 8.174 -0.174 
94 5.9 5.688 0.212 5.798 0.102 
95x 6.7 6.709 -0.009 6.7 0 
96 6.6 6.416 0.184 6.597 0.003 
97 6.8 6.823 -0.023 6.761 0.039 
98 6.2 6.457 -0.257 6.211 -0.011 
99 5.4 6.134 -0.734 5.11 0.29 

100x,m 5.9 6.882 -0.982 7.309 -1.409 
101 6.9 6.915 -0.015 7.067 -0.167 
102 6.4 6.686 -0.286 6.433 -0.033 

103x,m 6.5 7.667 -1.167 7.221 -0.721 
104 7.4 6.915 0.485 7.341 0.059 
105 7.0 6.893 0.107 6.939 0.061 

xCompounds belonged to the test set. mOutliers. 
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α is the attenuation factor, with a default value of 0.3 and an
optimal value normally ranging26 from 0.2-0.4. In this work,
five physicochemical properties including steric, electrostatic,
hydrophobic, HB donor and acceptor were evaluated using
the probe atom.

3D-QSAR models calculation, internal and external

validation: The method of partial least squares (PLS) imple-
mented in the QSAR module of SYBYL was used to construct
and validate the models. The CoMFA/CoMSIA descriptors
served as independent variables and pIC50 values as dependent
variable in PLS regression analysis. The advantage of this
method is that it can reduce the large number of original
descriptors to a few principal components (PCs) that are linear
combinations of the original descriptors27. The optimum number
of PCs was determined by the leave-one-out (LOO) cross-
validation procedure in which one compound is removed from
the data set and its activity is predicted using the model derived
from the rest of the data set28. Then with this optimal PCs
number, a non-cross-validation analysis was carried out and
the Pearson coefficient (R2

ncv) and standard error of estimates
(SEE) were calculated27.

During PLS process, to evaluate the reliability of the model
generated, several statistical parameters including the Q2 and
above R2

ncv are crucial. As a cross-validated coefficient, Q2 is
used as a statistical index of the predictive power of the model
and is calculated by eqn. 2 where the Ypredicted, Yobserved and Ymean

are predicted, actual and mean values of the target property,
respectively29.

∑

∑
−

−

−=

Y

2
meanobserved

Y

2
observedpredicted

2

)YY(

)YY(

1q
(2)

When assessing the predictive power of the QSAR model
derived using the training set, an independent test set was used
and their biological activities were predicted. The predictive
R2 (R2

pre) value is calculated using eqn. 3.








 −
=

SD

PRESSSD
R2

pre (3)

where SD is the sum of squared deviations between the biolo-
gical activity of the test set and the mean activity of training
set molecules and PRESS is the sum of squared deviations
between the actual and the predicted activities of the test set
molecules30. At last, the CoMFA/CoMSIA results were graphi-
cally represented by field contour maps, where the coefficients
were generated using the field type ''Stdev*Coeff''.

RESULTS AND DISCUSSION

CoMFA and CoMSIA statistical results: In this study,
discarding molecules 1 and 2 who have no common substruc-
tures (Fig. 2A), the remaining 82 compounds were aligned
according to the ligand-based alignment rules to derive the
CoMFA and CoMSIA models. During the modeling, same
training set (61 molecules), test set (21 molecules) were used
for all the models established. To evaluate the quality of the
models we built, several statistical parameters were analyzed,
including the cross-validated Q2, non-cross-validated correlation

coefficient R2
ncv, SEE, F-test values, predicted correlation

coefficient (R2
pre) and standard error of prediction SEP.

For CoMFA analysis, the steric and electrostatic field
descriptors were fitted together in every possible form to build
appropriate CoMFA mathematical models. Finally the models
using of descriptors steric and electrostatic fields obtained
proper reliability (Table-4) and got a result with Q2 = 0.53,
R2

ncv = 0.92, SEE = 0.26, F = 77.49 using eight optimum
components. When being tested by the independent test set,
the model exhibits a satisfactory predictive ability with R2

pre =
0.80 and SEP = 0.44 for this ligand-based model. In CoMFA
model, electrostatic feature is found to make more contribution
to the activity (52 %).

For CoMSIA models analysis, five fields including the
steric, electrostatic, hydrophobic, HB donor and HB acceptor
interactions were calculated using the same data sets as in the
CoMFA analysis. All the five parameters were fitted together
in every possible form to build appropriate CoMSIA models.
Finally, only by using steric, electrostatic, hydrophobic and
HB acceptor parameters superior ligand-based models were
obtained with the highest Q2 values (Table-4). The CoMSIA
model has a Q2 value of 0.51 with seven optimum components,
an R2

ncv value of 0.85, a SEE value of 0.36 and an F value of
43.43. Furthermore, CoMSIA model indicates that electro-
static feature plays major contribution to the correlation with
the mGluR5 antagonist activity. When validated by the inde-
pendent test set, the model exhibits a satisfactory predictive
ability with R2

pre = 0.80 and SEP = 0.42.
Normally, 3D-QSAR studies with a Q2 greater than 0.4

are considered to be statistically significant31. In addition,
higher R2

ncv and F values as well as lower SEE values should
also be considered as the foundation of a reliable 3D-QSAR
model. For our optimal 3D-QSAR models, their Q2 is larger
than 0.5, proving their reliability. But only using the exten-
sively accepted LOO cross-validated Q2 is insufficient to assess
the predictive power of the QSAR models32. Therefore,
presently we further validated the predictive capacity of above
four models by predicting the activity (pIC50 value) of the
compounds of the external test set. For this purpose, the test
set (21 molecules) which representing 33.9 % of the training
set were used.

Before the final validation by the test set, an initial inspec-
tion of the fitted/predicted activities reveals poor prediction
for several inhibitors which were considered as outliers in this
work, they are compounds 3, 4, 100 and 103. Several reasons
like unmatched structure, different active conformation or more
specific molecular mechanisms may result in the existence of
outliers. A particular careful examination of the outliers may
provide additional information determining their peculiarities;
therefore, in this study all outliers are attentively checked and
are finally divided as follows:

Compounds 100 and 103 belong to type C skeleton in
structure which includes 8 molecules of 98-105. Having unique
and complex R substituents which substructures may greatly
affect their binding conformations, the two molecules may
have special and different active conformation from others
and thus may not fit well in the current binding pocket assumed
for most of other molecules with similar skeleton type and
substituents.
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Compounds 3 and 4, they all have a higher residual
between the experimental and predicted activity (pIC50 value
residual is larger than 1.2) and thus are treated as outliers.
This discrepancy, we speculate, on one hand indicates that
these particular molecules may not be typical of the rest of the
data and on the other hand suggests the necessity to recruit
more plenteous and accurate experimental data with more
diversified molecular structures.

After elimination of these outliers, both the CoMFA and
CoMSIA models exhibit good prediction (Q2 is larger than
0.5 and R2 pre is larger than 0.85), indicating ligand-based
alignment rule is good. The observed and CoMFA/CoMSIA
predicted mGluR5 receptor inhibitory activities are shown in
Table-3.

Fig. 3 depicts the actual versus predicted pIC50 values plot
for both the training (filled black square) and test (filled blue
diamond) set molecules of the whole data set based on CoMFA
and CoMSIA models. As observed, all the points are rather
uniformly distributed around the regression line in the two
figures and the predicted activities are almost as accurate as
the experimental data, indicating a proper correlation between
the predicted and experimental activities of the data set and
the reliability of the obtained models.
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Fig. 3. Ligand-based correlation plots of the predicted versus the actual
pIC50 values using the training set (filled black square) and the test
set I (filled blue diamond) based on (A) CoMFA model and (B)
CoMSIA model, respectively

3D-QSAR contour maps: In order to view the field effect
on the target property, CoMFA and CoMSIA contour maps
were generated. The contour maps can identify the important
regions where any change in the steric, electrostatic, hydro-
phobic and HB fields may affect the biological activity and
reveal the important features of the ligand-receptor inter-
actions29. The visualization of the 3D-QSAR models was
performed using the StDev*Coeff mapping option contoured
by contribution. The default level of contour by contribution,
80 % for favoured region and 20 % for disfavoured region,
was setted during contour analysis. All contour maps obtained
from the models are illustrated together with template comp-
ound 68 (Fig. 4) which is one of the most active molecules in
the whole data set (with pIC50 value of 9.4).

Fig. 4. Structure of compound 68. Other molecules in the dataset are similar
to 68 in structure except the R, R1 and Ar substituents

CoMFA contour map analysis: The contributions of the
steric and electrostatic fields for the CoMFA results were
graphically displayed in contour maps in Fig. 5. The blue-red
region to the green-yellow region indicates a greater contri-
bution of the electrostatic field towards the inhibitory activity
than the steric field. This different contribution is also reflected
in Table-4 where the relative contribution for the steric field is
48 % whereas the contribution of the electrostatic field is 52 %.
Fig. 5A shows the steric contour map of the optimal CoMFA
model, the steric fields defined by the green coloured contours
represent regions of favourable steric effect, while yellow
coloured contours represent regions of unfavourable steric
effect. Three small positive steric (green) regions are found
appearing around the ring-C (Ar substituent), explaining why
molecules who carry a bulky substituent in ring-C are more
active than those compounds without substituent in these
particular positions. A good illustration is that compounds 27

and 29 whose R substituent is -F and -CF3, respectively are
less active than compounds 3 and 4 with -Ph and -4-F-Ph as
Ar substituent, respectively. A green contour is also observed
staying above the positon-3 (R substituent) in ring-A, sugges-
ting its favour for sterically bulky groups, which can be
examplified by the smaller pIC50 values of compounds 82, 83,
84 and 85 than chemicals 86, 87, 88 and 89. In contrast, a big
negative steric (yellow) region presents itself below the
position-3, indicating that a substituent of bulky steric below
this position disbenifits the biological activity of the molecules.
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Fig. 5. CoMFA StDev*Coeff contour plots. (A) steric (green/yellow)
contour map combined with compound 68. Green contours indicate
regions where bulky groups increase the activity; yellow contours
indicate regions where bulky groups decrease the activity. (B)
Electrostatic contour map (blue/red) in combination with compound
68. Blue contours indicate regions where positive charges increase
the activity; red contours indicate regions where negative charges
increase the activity

TABLE-4 
SUMMARY OF CoMFA AND CoMSIA RESULTS* 

Ligand-based model 
PLS statistics 

CoMFA CoMSIA 
Q2 0.53 0.51 

R2
ncv 0.92 0.85 

SEE 0.26 0.36 
F 77.49 43.43 

R2
 pre 0.80 0.80 

SEP 0.44 0.42 
OPN 8 7 

Contribution 
Steric 0.48 0.14 

Electrostatic 0.52 0.37 
Hydrophobic – 0.23 
HB acceptor – 0.26 

*Q2, cross-validated correlation coefficient after the leave-one-out 
procedure; R2

ncv, non-cross-validated correlation coefficient; SEE, 
standard error of estimate; F, ratio of R2

ncv explained to unexplained = 
R2

ncv/(1-R2
ncv); R2

pre, predicted correlation coefficient for test set I 
compounds; SEP, standard error of prediction; OPN, optimal number 
of principal components. 

 
This conclusion is well proved by the fact that compounds 23,
24 and 99 with large R substituent in position-3 possess only
small pIC50 values of 6.5, 6.7 and 5.4, respectively.

Electrostatic contour map based on the PLS analysis of
the CoMFA models are shown in Fig. 5B where increasing
negative charge is favoured in red regions and increasing
positive charge is favoured in blue regions. One big red poly-
hedron adjacent to the position-3 in ring-A represents the
areas where the negative charged group is favoured, exampled
by the fact that R substituent in ring-A (position-3) which is
-CN bearing negative charges on the N atom increases the
activity, like molecules 65 (pIC50 = 8.5), 66 (pIC50 = 9.1) and
68 (pIC50 = 9.4) whose pIC50 values are higher than any other
molecules in the whole data set. Another one small red poly-
hedron appearing near the position-9 of ring-C indicates the
regions where a negative charge substituent would be
favourable and possibly improve the activity. One big blue
polyhedron lying above the plane of the ring-A (position-3)
indicates substituents with positive charges may improve their
activities. There is a big blue contour surrounding the phenyl
substituent which shows its favour for groups with positive
charges. This conclusion is well illustrated by the poor activity
of molecules 5 (pIC50 = 7.8), 6 (pIC50 = 6.2) and 8 (pIC50 =
6.5) with respective fluorine, chlorine and hydroxyl in the
ring-C compared with compound 3 (pIC50 = 8.6) with no
negative atom in ring-C.

CoMSIA contour map analysis: In this study, the
optimal CoMSIA model not only calculates the steric and
electrostatic fields, but also uses the hydrophobic and HB
acceptor fields to correlate with the antagonist activity. All
contour maps of the four CoMSIA fields are shown in Fig. 6.
The colour scheme used in the CoMSIA steric and electro-
static field contour maps (Fig. 6A and B) is the same as
described in the CoMFA contour maps. The steric contour
map of CoMSIA model (Fig. 5A) shows similar results as that
of the CoMFA one. with only difference in that all the positive
steric (green) regions locating around the ring-C (Ar substi-
tuent) and positon-3 (R substituent) in ring-A in the CoMSIA
model are much larger in size than in the CoMFA one. These
results lead to the conclusion that compound with bulky substi-
tuent in positon-3 (ring-A) and ring-C may result in an increasing
of the activity.

As shown in Table-4, electrostatic field makes the largest
contribution to the CoMSIA QSAR models, which suggests
that among all descriptors considered, the electrostatic property
of the inhibitors may play more important role affecting the
binding affinities. Fig. 6B shows the electrostatic contour map
of the optimal CoMSIA model, where the blue polyhedron is
clearly smaller than in the CoMFA one. One small blue contour
is also observed placing near the ring-C (position-8) indicating
that the occupancy by electropositive substituent in this region
would promote the binding affinities to mGluR5 receptor and
the other blue region adjacent to the ring-C (position-10 and
11) also points out the favour of electropositive substituent in
this region.

The CoMSIA hydrophobic contour map of affinity for
mGluR5 is depicted in Fig. 6C, where yellow and white
contours highlight areas that hydrophobic and hydrophilic
properties are preferred, respectively. One yellow polyhedron
appearing above the ring-A (position-3) indicates that hydro-
phobic groups (like -OMe, -OEt, -F, -Cl, -Br) are beneficial to
enhance the activity, like compounds 76 (pIC50 = 6.5) and 77
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Fig. 6. CoMSIA StDev*Coeff contour plots. (A) steric (green/yellow)
contour map in combination with compound 68. Green contours
indicate regions where bulky groups increase the activity; yellow
contours indicate regions where bulky groups decrease the activity.
(B) Electrostatic contour map (blue/red) in combination with
compound 68. Blue contours indicate regions where positive charges
increase the activity; red contours indicate regions where negative
charges increase the activity. (C) Hydrophobic contour map (yellow/
white) in combination with compound 68. Yellow contours indicate
regions where hydrophobic substituents enhance the activity; white
contours indicate regions where hydrophilic substituents enhance
the activity. (D) HB acceptor contour map (magenta/red) in
combination with compound 68. Magenta contours indicate regions
where HB acceptor on the molecule promotes the affinity; red
contours indicate regions where HB acceptor on the molecule
demotes the affinity

(pIC50 = 8.1) with -COOEt in substituents in position-3 exhibi-
ting higher activities than 79 (pIC50 = 6.3) and 81 (pIC50 = 7.3)
which have -CONH2 substituents in the same position. The
other yellow isopleth near the ring-C (position-10) also indicates
that hydrophobic groups are beneficial to increase the activity.
There is one white contour around the R substituent in position-
3 of ring-A revealing the necessity of hydrophilic groups (like
hydroxy or cyano) on this position to enhance the activity,
like the compounds 65 (pIC50 = 8.5), 66 (pIC50 = 9.1) and 68

(pIC50 = 9.4) with -CN group in this position. Another two
white polyhedrons placing near the ring-C (position-9 and 11)
also demonstrate the region's favour for hydrophilic groups.

Fig. 6D displays the CoMSIA hydrogen-bond acceptor
field. The magenta and red contours indicate regions where
HB acceptor group increases and decreases the activity,
respectively. A big magenta isopleth adjacent to the position-
3 in ring-A supporting the requirement of HB acceptor to
improve the activity. This offers an explanation for the higher
biological activity of compounds 13 (pIC50 = 8.9) and 68 (pIC50

= 9.4) which all have the -CN substituent in the position-3 of
ring-A than any other molecules in the whole data set. Two
small red contours are also found adjacent to the ring-C
(position-9 and 10), revealing that HB acceptor group impairs
the activity just like the compound group of 65-97. Molecules
with the same R substituent if their Ar substituent without F
atoms always show higher activities than with -F atoms, due
to the HB acceptor role of the fluorin in ring-C (position-9
and 10).

The detailed contour analysis of ligand-based CoMFA and
CoMSIA models enabled us to identify several structural
requirements as mentioned in above paragraph for the observed
inhibitory activities: (1) Electropositive groups in Ar substi-
tuent are beneficial to enhance the activity; (2) R substituent
with HB acceptor also leads to high activity; (3) Bulky R and
Ar substituents are not favoured in mGluR5; (4) R substituent
with hydrophilic group can improve the biological activity.

Conclusion

In this work, depending on the ligand-based alignments a
3D-QSAR study using CoMFA and CoMSIA methods was
carried out for the first time to new fused phenylethynyl-
pyrrolo[1,2-a]pyrazine derivatives as mGluR5 antagonists.
Based on the reasonable Q2, R2

ncv, R2
pre values of test set, we

conclude our ligand-based models are reasonable with proper
predictivity (for CoMFA model: Q2 = 0.53, R2

ncv = 0.92, R2
pre

= 0.80 and for CoMSIA model: Q2 = 0.51, R2
ncv = 0.85, R2

pre =
0.80). In addition, the results from the contour maps have
offered insight for the design of mGluR5 antagonists by identi-
fying significant regions for steric, electrostatic, hydrophobic
and HB acceptor interactions: (1) electropositive groups in
Ar substituent are beneficial to enhance the activity; (2) R
substituent with HB acceptor also leads to high activity; (3)
Bulky R and Ar substituents are not favoured in mGluR5; (4)
R substituent with hydrophilic group can improve the biolo-
gical activity. All these results should provide information for
better understanding of the mechanism of antagonism and thus
be helpful to further validate the potential therapeutic appli-
cations of the mGluR5 antagonists in future.
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