
Asian Journal of Chemistry; Vol. 24, No. 1 (2012), 228-230

Asian Journal of Chemistry

www.asianjournalofchemistry.co.in

Alum: An Efficient Catalyst for Trimethylsilylation of Alcohols and Phenols with Hexamethyldisilazane

XIAOJUAN YANG^{1,*} and JINYING LIANG²

¹College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453003, Henan, P.R. China ²School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan, P.R. China

*Corresponding author: Fax: +86 373 3682674; Tel: +86 373 3682674; E-mail: yangxiaojuan2005@126.com

(Received: 8 December 2010;

Accepted: 15 September 2011)

AJC-10406

A highly convenient method for the trimethylsilylation of alcohols and phenols *via* treatment by hexamethyldisilazane in the presence of alum as a catalyst has been developed. A wide variety of hydroxyl groups were selectively protected in CH₃CN under mild conditions.

Key Words: Alcohol, Phenol, Trimethylsilyl ether, Alum, Catalysis.

INTRODUCTION

Protection of hydroxyl functional group is an important process in multi-step synthesis¹. One of the popular methods for this purpose is to transfer hydroxyl group into their corresponding silvlether². Generally, the formation of silvlether was carried out by the treatment of alcohols with silylchlorides or silvltriflayes under the influence of basic condition³⁻⁷. However, these methods frequently suffered from drawbacks such as lack of reactivity and the difficulty in removal of ammonium salts. Hexamethyldisilazane (HMDS) is a cheap and commercially available compound that can be used for the preparation of trimethylsilylethers from hydroxyl compound. O-Silylation of alcohol using hexamethyldisilazane is an attractive alternative, since the only by-product of the reaction is ammonia. Even though the handling of this reagent is easy, its main drawback is its poor silvlating power, which needs forceful condition and long reaction time⁸. A variety of catalysts have been reported for the activation of hexamethyldisilazane in the literature, $Sn(IV)(TPP)(BF_4)_2^9$, SiO_2 - $ZnCl_2^{10}$, $La(NO_3)_3^{11}$, TiCl₂(OTf)-SiO₂¹², Fe(ClO₄)₃¹³, 1,3-dichloro-5,5-dimethylhydantoin¹⁴, Bi(OTf)₃¹⁵, TiCl₃(OTf)¹⁶, nafion SAC-13¹⁷, NaHSO₄-SiO₂¹⁸, NBS¹⁹, Al₂O₃-HClO₄²⁰, silica-FeCl₃²¹, $Al(H_2PO_4)_3^{22}$, $ZrO(OTf)_2^{23}$, ZnO^{24} , $Fe(HSO_4)_3^{25}$, silica sulfuric acid²⁶, ferric chloride²⁷, [bmim][BF₄]²⁸, montmorillonite K-10²⁹ are important systems. Although these procedures provide improvement, many of these catalysts or activators require long reaction time and drastic reaction condition.

Recently, alum (KAl(SO₄)₂·12H₂O), which is relatively nontoxic and inexpensive catalyst, has emerged as an efficient alternative catalyst for a variety of prominent organic reactions such as Biginelli³⁰, Pechmann reaction³¹ and also used for the synthesis of 1,8-dioxo-octahydroxanthenes³², isoquinolonic acids³³, trisubstituted imidazoles³⁴, 1'*H*-spiro[isoindoline-1,2'-quinazoline]-3,4'(3'*H*)-diones³⁵, 1,3,4-oxadiazoles³⁶ and 1,5-benzodiazepines³⁷.

In this paper, we wish to report a rapid and highly efficient method for trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDH) catalyzed by alum at room temperature (**Scheme-I**).

$$ROH + (Me_{3}Si)_{2}NH \xrightarrow{Alum} ROSiMe_{3}$$

$$HMDH \xrightarrow{Room temp.} 2$$

$$Scheme-I$$

EXPERIMENTAL

NMR spectra were determined on Bruker AV-400 spectrometer at room temperature using TMS as internal standard, coupling constants (*J*) were measured in Hz; elemental analysis were performed by a Vario-III elemental analyzer; melting points were determined on a XT-4 binocular microscope and were uncorrected; commercially available reagents were used throughout without further purification unless otherwise stated.

General procedure for the preparation of 2: To a mixture of hexamethyldisilazane (1 mmol) and alum (0.05 mmol) in CH₃CN (1 mL) an alcohol or phenol (1 mmol) was added and the mixture was stirred at room temperature for the specified time (Table-3). Then reaction was quenched with water (5 mL) and organic phase dried over Na₂SO₄ (3 g) after 5 min. Evaporation of the solvent under reduce pressure gave almost pure product. The desired pure products were characterized by comparison of their NMR data with those of known compounds. The spectral data of some new trimethylsilylethers are given below:

(1-(3-Bromophenyl)ethoxy)trimethylsilane: (2i): ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.31 (m, 4H), 4.82 (q, *J* = 8.4, 1H), 1.49 (d, *J* = 4.4, 3H), 0.15 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 149.3, 135.1, 130.2, 127.4, 125.8, 124.2, 68.9, 26.9, 0.08; anal. calcd. (%) for C₁₁H₁₇BrSi: C 48.35, H 6.27; found (%): C 48.28, H 6.35.

 $\begin{array}{l} ((\text{4-Chlorocyclohexa-2,4-dienyl})(\text{4-chlorophenyl})-\\ \text{methoxy})\text{trimethylsilane (2j): $^{1}\text{H} NMR (400 MHz, CDCl_3):}\\ \delta \ 7.60\ 7.53 \ (\text{m}, 4\text{H}), \ 7.28\ 7.20 \ (\text{m}, 4\text{H}), \ 5.89 \ (\text{s}, 1\text{H}), \ 0.28 \ (\text{s}, 9\text{H}); $^{13}\text{C} NMR (100 \text{ MHz, CDCl}_3): \ \delta \ 164.8, \ 158.2, \ 141.2, \ 140.2, \\ 116.3, \ 115.0, \ 76.2, \ 0.10; \ \text{Anal. calcd. (\%) for } C_{16}H_{18}\text{OCl}_2\text{Si:} \\ \text{C} \ 59.07, \ \text{H} \ 5.58; \ found \ (\%): \ C \ 59.01, \ \text{H} \ 5.63. \end{array}$

(4-(4-Methoxyphenyl)butoxy)trimethylsilane (20): ¹H NMR (400 MHz, CDCl₃): δ 7.10 (d, *J* = 8.4, 2H), 6.82 (d, *J* = 8.4, 2H), 3.72 (s, 3H), 3.70-3.67 (m, 2H), 2.58-2.54 (m, 2H), 1.65-1.60 (m, 2H), 1.65-1.60 (m, 2H), 1.47-1.40 (m, 2H), 0.19 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 158.2, 132.1, 130.4, 114.2, 65.2, 55.9, 36.8, 33.1, 26.9, 0.12; Anal. calcd. (%) for C₁₄H₂₄O₂Si: C 66.61, H 9.58; found (%): C 66.72, H 9.48.

RESULTS AND DISCUSSION

First, we tried to convert benzyl alcohol (1 mmol) to its corresponding benzylsilylether with alum (0.05 mmol) and hexamethyldisilazane (1 mmol) in the presence of various solvents (Table-1). The results in Table-1 show that amongst these solvents, acetonitrile was the solvent of choice in terms of time and product yield.

TABLE-1 SOLVENT OPTIMIZATION FOR THE SYNTHESIS OF OPTIMIZATION FOR THE SYNTHESIS OF BENZYLTRIMETHYLSILYL ETHER*			
Entry	Solvent	Time (min)	Yield (%)**
1	THF	40	89
2	CH_2Cl_2	25	90
3	EtOAc	30	86
4	n-Hexane	45	73
5	CHCl ₃	30	85
6	CH ₃ CN	25	97
*Reaction	conditions: benzyl a	alcohol (1 mmol);	HMDS (1 mmol);

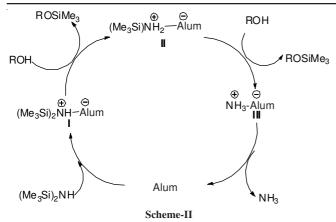
*Reaction conditions: benzyl alconol (1 mmol); HMDS (1 mmol) Alum (0.05 mmol); Room temperature **Isolated yield.

To determine the appropriate concentration of the catalyst alum, we investigated the model reaction at different concentrations of catalyst like 1, 2, 3, 4, 5, 6, 7 and 8 mol %. The product formed in 65, 72, 82, 90, 97, 96, 97 and 96 % yield, respectively. This indicates that 5 mol % of alum is sufficient for the best result (Table-2, Entry 6).

Using these optimized reaction conditions, a series of alcohols has been subsequently experimented. As shown in Table-3, benzylic alcohols, cyclic alcohols and aliphatic alcohols were silylated with hexamethyldisilazane at room temperature within 35 min in excellent yields after the addition of the catalyst alum. It is interesting to check whether the same catalyst could be employed for trimethysilylation of phenolic compounds. Under the same conditions as above, most of the

TABLE-2 AMOUNT OF CATALYST OPTIMIZATION FOR THE SYNTHESIS OF BENZYL TRIMETHYLSILYL ETHER*				
Entry	Alum (mol %)	Time (h)	Yield (%)**	
1	0	60	0	
2	1	45	65	
3	2	30	72	
4	3	30	82	
5	4	25	90	
6	5	25	97	
7	6	25	96	
8	7	20	97	
9	8	20	96	
*Deastion	anditional hanzyl alashal	(1 mmol)	$\mathbf{HMDS} (1 \text{ mmol})$	

*Reaction conditions: benzyl alcohol (1 mmol); HMDS (1 mmol); Room temperature **Isolated yield.


TABLE-3			
TRIMETHYLSILYLATION OF ALCOHOLS			
AND PHENOLS CATALYZED BY ALUM*			

Entry	Substrate	Time (min)	Products	Yield (%)**
1	Benzyl alcohol	25	2a	97
2	4-Chlorobenzyl alcohol	20	2b	100
3	3-Nitrobenzyl alcohol	25	2c	92
4	4-Nitrobenzyl alcohol	20	2d	95
5	4-Methylbenzyl alcohol	25	2e	88
6	4-Methoxylbenzyl alcohol	25	2f	92
7	2,4-Dichlorobenzyl alcohol	30	2g	92
8	3,4-Methylenedioxybenzyl alcohol	35	2h	89
9	1-(3-Bromophenyl)ethanol	30	2i	94
10	(4-Chlorocyclohexa-2,4-	20	2j	92
	dienyl)(4-chlorophenyl) methanol		Ŭ	
11	Cyclohexanol	25	2k	90
12	Menthol	35	21	85
13	Cholesterol	35	2m	82
14	2-Adamantanol	30	2n	87
15	4-(4-Methoxyphenyl)butan-1-ol	30	20	92
16	Lauryl alcohol	30	2p	85
17	2,2-Dimethylpropan-1-ol	20	2q	88
18	Pentan-1-ol	20	2r	95
19	Phenol	20	2s	99
20	4-Chlorophenol	20	2t	100
21	3-Nitrophenol	25	2u	92
22	4-Nitrophenol	20	2v	96
23	4-Methylphenol	30	2w	98
24	4-Methoxylphenol	25	2x	92
25	2,4-Dichlorophenol	30	2y	94

*Reaction conditions: alcohol or phenol (1 mmol); HMDS (1 mmol); alum (0.05 mmol); neat; Room temperature **Isolated yield.

tested phenols were smoothly converted into the corresponding silyl ethers in good yields. No elimination and rearrangement by-products were observed at all.

A plausible mechanism has been shown in **Scheme-II**. Lewis acid-base interaction between the alum and nitrogen of hexamethyldisilazane polarizes the N-Si bond to produce the reactive silylating agent (I), which rapidly reacts with alcohol to give the corresponding silyl compounds and complex (II). This complex (II) reacts with another molecule of alcohol to produce the corresponding silyl derivative. Finally the complex (III) collapses to the formation of ammonia and liberation of the catalyst. The evolution of ammonia was confirmed by its strong, pungent odor and using the red litmus paper which turns to blue.

In order to show the merit of alum in comparison with other catalysts used for the similar reaction, we have tabulated some of the results in Table-4. As it is evidence from the results, alum found to be effective catalyst for trimethylsilylation of alcohols and phenols with hexamethyldisilazane.

TABLE-4			
ALUM CATALYZED TRIMETHYLSILYLATION OF BENZYL			
ALCOHOL IN COMPARISON WITH OTHER LITERATURES			

Entry	Catalyst and conditions	Solvent	Time (min)	Yield (%)	Ref.
1	Fe(HSO ₄) ₃ (25 mol %); reflux	CH ₃ CN	100	70	[25]
2	TiCl ₂ (OTf)-SiO ₂ (1 mol %)	Neat	10	87	[12]
3	Trichloromelamine (3 mol %)	CH ₂ Cl ₂ / CH ₃ CN	30	92	[14]
4	Silica sulfuric acid (83 mg/mmol)	Neat	10	93	[26]
5	Alum (5 mol %)	CH ₃ CN	25	98	The study

Conclusion

We have developed a simple, mild and environmentally benign method for trimethylsilylation of alcohols and phenols with hexamethyldisilazane catalyzed by alum at room temperature. This method offers the advantage of shorter reaction times, high chemoselectivity and easy workup. It is believed that this methodology could be an important addition to the existing methodologies.

ACKNOWLEDGEMENTS

The authors acknowledged the financial support from Xinxiang University.

REFERENCES

- G. Sartori, R. Ballani, F. Bigi, G. Bosica, R. Maggi and P. Righi, *Chem. Rev.*, 104, 99 (2004).
- P.G.M. Wuts and T. W. Greene, Greene's Protective Groups in Organic Synthesis, John Wiley and Sons, New Jersey, edn. 4 (2007).

- 3. E.J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., 94, 6190 (1972).
- L. Lombardo, *Tetrahedron Lett.*, 25, 227 (1984).
 G.A. Olah, B.G.B. Gupta, S.C. Narang and R. Malhorta, *J. Org. Chem.*,
- 44, 4272 (1979).
- 6. B.A. D'Sa, D. McLeod and J.G. Verkade, J. Org. Chem., 62, 5057 (1997).
- 7. M. Suzuki, Tetrahedron, 37, 3899 (1981).
- 8. C.A. Bruynes and T.K. Jurriens, J. Org. Chem., 47, 3966 (1982).
- M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-Baltork and S. Gharaati, *Polyhedron*, 29, 212 (2010).
- H.R. Shaterian, F. Khorami, R. Doostmohammadi, A. Amirzadeh and M. Ghashang *Phosphorus, Sulfur Silicon Rel. Elem.*, 184, 2227 (2009).
- 11. B. Akhlaghinia, *Phosphorus, Sulfur Silicon Rel. Elem.*, **184**, 2530 (2009).
- H. Firouzabadi, N. Iranpoor and S. Farahi, J. Organomet. Chem., 694, 3923 (2009).
- H.A. Oskooie, M.M. Heravi, M.H. Tehrani, F.K. Behbahani and O.M. Heravi, *Phosphorus, Sulfur, Silicon Rel. Elem.*, 184, 1729 (2009).
- A. Ghorbani-Choghamarani, K. Amani, M.A. Zolfigol, M. Hajjami and R. Ayazi-Nasrabadi, J. Chin. Chem. Soc., 56, 255 (2009).
- 15. S.T. Kadam and S.S. Kim, J. Organomet. Chem., 694, 2562 (2009).
- H. Firouzabadi, N. Iranpoor and S. Farahi, *Catal. Commun.*, 10, 1547 (2009).
- 17. G. Rajagopal, H. Lee and S.S. Kim, Tetrahedron, 65, 4735 (2009).
- H.R. Shaterian, R. Doostmohammadi, M. Ghashang and M. Rahmani, *Phosphorus, Sulfur, Silicon Rel. Elem.*, 183, 3127 (2008).
- H.R. Shaterian, R. Doostmohammadi and M. Ghashang, *Chin. J. Chem.*, 26, 1709 (2008).
- H.R. Shaterian, F. Khorami, A. Amirzadeh and M. Ghashang, *Phosphorus, Sulfur, Silicon Rel. Elem.*, 183, 2865 (2008).
- H.R. Shaterian, M. Ghashang and A. Hosseinian, *Phosphorus, Sulfur, Silicon Rel. Elem.*, 183, 2108 (2008).
- H.R. Shaterian, M. Ghashang, N.T. Riki and M. Asadi, *Can. J. Chem.*, 86, 841 (2008).
- M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-Baltork, S. Chahardahcheric and Z. Tavakoli, *J. Organomet. Chem.*, 693, 2041 (2008).
- H.R. Shaterian and M. Ghashang, *Phosphorus, Sulfur, Silicon Rel. Elem.*, 183, 194 (2008).
- F. Shirini, M.A. Zolfigol and A.-R. Abri, *Monatsh. Chem.*, 139, 17 (2008).
- H. Ghafuri, B. Eftekhari-Sis and M.M. Hashemi, *Phosphorus, Sulfur, Silicon Rel. Elem.*, 182, 1645 (2007).
- 28. B. Akhlaghinia, Phosphorus, Sulfur, Silicon Rel. Elem., 182, 687 (2007).
- M.M. Mojtahedi, H. Abbasi and M.S. Abaee, *Phosphorus, Sulfur, Silicon Rel. Elem.*, 181, 1541 (2006).
- M. Khodaei, A. Khosropour and J. Abbasi, *Phosphorus, Sulfur, Silicon Rel. Elem.*, 181, 93 (2006).
- J. Azizian, A.A. Mohammadi, A.R. Karimi and M.R. Mohammadizadeh, *Appl. Catal A: Gen.*, 300, 85 (2006).
- 32. M. Dabiri, M. Baghbanzadeh, S. Kiani and Y. Vakilzadeh, *Monatsh. Chem.*, **138**, 997 (2007).
- B.R. Madje, M.B. Ubale, J.V. Bharad and M.S. Shingare, S. Afr. J. Chem., 63, 36 (2009).
- J. Azizian, A.A. Mohammadi, A.R. Karimi and M.R. Mohammadizadeh, J. Org. Chem., 71, 350 (2006).
- A.A. Mohammadi, M. Mivechi and H. Kefayati, *Monatsh. Chem.*, 139, 935 (2008).
- 36. A.A. Mohammadi and H. Qaraat, *Monatsh. Chem.*, 140, 401 (2009).
- M. Dabiri, P. Salehi, S. Otokesh, M. Baghbanzadeh and M. Bahramnejad, Monatsh. Chem., 138, 253 (2007).
- D. Mahajan, T. Naqvi, R.L. Sharma and K.K. Kapoor, *Aust. J. Chem.*, 61, 59 (2008).