
INTRODUCTION

 Knowledge of the chemical composition of atmospheric

nanoparticles (atmospheric aerosols) is essential to assess its

impact on the environment, either by affecting the air quality

in populated areas or by influencing the climate. Our under-

standing of the physical and chemical properties of aerosols

is essential for properly assessing their effects on various issues

such as human health, air quality and global climate and ulti-

mately establishing effective control strategies. The effects of

atmospheric aerosol particles on the environment and on

human health are strongly dependent on their particle size and

chemical composition1,2. Atmospheric particles are also known

to directly alter the Earth's radiative balance by scattering and

absorbing solar radiation. Their heating or cooling effects

depend on a number of properties such as number concen-

tration, chemical composition and size3-5. The fine mode of

the aerosol (diameter d 〈 1µm) is of particular importance

because fine particles are inhalable, they can interact with the

solar radiation and provide the majority of cloud condensation

nuclei. The major atmospheric nanoparticles include inorganic

substances, such as sulphates and carbonaceous species. Carbo-

naceous aerosol, including elemental carbon (EC, a chemical

structure similar to impure graphite) and organic carbon (OC,
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a large variety of organic compounds), are important compo-

nents of the atmospheric nanoparticles6.

For a time-series study, on the influence of organic aerosol

compounds, it is necessary to have data of several compounds

or groups of compounds at least with a daily resolution. Since

most of the organic compounds occur in low concentrations

in ambient aerosol, time-consuming analytical methods are

required for their analysis. Comprehensive two-dimensional

gas chromatography (GC × GC) is a novel technique, whereby

a sample is separated (in two dimensions) with two compre-

hensively coupled gas chromatographic columns. Two diffe-

rent chromatographic mechanisms (i.e. volatility and polarity)

are used to separate the compounds in the two columns. A

promising technique for analysis of air pollution research is

GC × GC coupled to time-of-flight mass spectrometry

(TOFMS)7,8. Due to the increased separation of GC × GC with

respect to one-dimensional GC, the mass spectra are of consi-

derably increased quality (lower background level).

The problem of skewing of mass spectra in GC-MS experi-

ments with scanning mass analyzers is also not present in time-

of-flight mass spectrometry. Thus, TOFMS provide identical

mass spectral patterns over a complete chromatographic peak

for the same component. The TOFMS systems can readily
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achieve the required spectral acquisition rates for reliable GC

× GC peak assignment and quantification9,10. The combination

of GC × GC and TOFMS allowed detection of more than

10,000 individual organic compounds in aerosol samples11.

Nanoparticle analytes are first separated by their diffe-

rences in boiling point through the use of a conventional

dimension low polarity column, then by their differences in

polarity (exploiting activity coefficient differences with the

2D stationary phase) by using a higher polarity column. Vapour

pressure (P) is an important parameter for assessing transport

and fate of organic pollutants in the environment, because it is

a measure of volatility of those organic compounds. In addi-

tion, vapour pressure is required for determination of other

environmentally relevant physicochemical properties, such as

air-water partition coefficient, Henry's law constant, enthalpy

of vapourization etc.12,13.

Among all methods, quantitative structure-property rela-

tionships (QSPR) are most popular. In quantitative structure-

property relationships, the property of given chromatographic

system was modeled as a function of solute (molecular) descri-

ptors. A number of reports, deals with QSPR vapour pressure

(P) calculation of several compounds have been published in

the literature14-16. The quantitative structure-property relation-

ships models apply to partial least squares method often

combined with genetic algorithms for feature selection17,18.

In the recent years, nonlinear kernel-based algorithms as

kernel partial least squares have been proposed19,20. The kernel

partial least squares can efficiently compute latent variables

in the feature space by means of integral operators and non-

linear kernel functions21. Compared to other non-linear methods,

the main advantage of the kernel based algorithm is that it

does not involve nonlinear optimization. It essentially requires

only linear algebra, making it as simple as the conventional

linear partial least squares (PLS). In addition, because of its

ability to use different kernel functions, kernel partial least

squares (KPLS) can handle a wide range of non-linearities. In

the present study, GA-PLS and GA-KPLS were employed to

generate QSPR models that correlate the structure of nano-

particles; with observed vapour pressure (P). The present study

is a first research on QSPR of the nanoparticle compounds

against the vapour pressure, using GA-PLS and GA-KPLS.

EXPERIMENTAL

The methodology applied in this study involved the

following five steps: (i) collecting experimental data and split-

ting the compounds, for which the data was available, into a

training set and a validation set; (ii) calculating molecular

descriptors for all congeners and selecting the optimal pool of

the descriptors to be utilized in the QSPR model; (iii) calibrating

and simultaneously, internal validating the QSPR model, (iv)

externally validating the developed model with use of the

validation set, (v) applying the model to predict the values of

vapour pressure for new compounds (those congeners, for

which the experimental data have been unavailable so far).

Data set: Vapour pressure of 29 nanoparticle compounds

from coniferous forest were taken from the literature22 are

presented in Table-1. Atmospheric particulate samples were

collected onto quartz fibre filters (diameter 240 mm, Munktell,

Grycksbo, Sweden) with a high volume sampler, placed on

the ground. A GC × GC-TOF-MS system were carried out on

an Agilent 6890 gas chromatograph equipped with a split/

splitless injector and a Pegasus II time-of-flight mass spectro-

meter (LECO, St. Joseph, MI, USA). The injector was used in

splitless mode at 300 ºC. Helium (HoekLGOs, Schiedam, the

Netherlands, purity 99.999 %) in constant flow mode was used

as carrier gas with head pressure of 170 kPa at 60 ºC. The GC

oven was temperature programmed as follows: 60 ºC   (5 min)

then 5 ºC min-1 to 300 ºC  (8 min). A 20 m × 0.25 mm I.D. HP-

5MS (Agilent Technologies) column with film thickness of

0.25  m was used as the first column and a 0.7 m × 0.1 mm

I.D. BGB-1701 column (BGB Analytik) with film thickness

of 0.1 µ mas the second column. Most of the identified

compounds have vapour pressures above 10 Pa and should be

in the gas phase. Identified compounds of these atmospheric

aerosols include acyclic alkanes, alkenes, ketones, aldehydes,

a few alcohols and acids and aromatic compounds. In present

studies, data was resulted by nonpolar capillary used for QSPR

research. The vapour pressure of these compounds was

decreased in the range of 275.9 and 13 for both octanal and

2-undecanone, respectively.

TABLE-1 
DATA SET AND THE CORRESPONDING OBSERVED AND 
PREDICTED VAPOUR PRESSURE VALUES BY GA-KPLS 

No Name PExp PCal RE 

 Training set    

1 2-Undecanone 13.0 14 7.69 

2 3-Methyl-Dodecane  14.1 15.3 8.51 

3 Alpha, alpha,4-trimethyl-benzenemethanol  20.8 22.9 10.10 

4  Alpha, alpha-dimethyl-benzenemethanol 24.4 23.6 3.28 

5 Decanal 27.6 28.4 2.90 

6 1-Dodecene 31.2 29 7.05 

7 2-Decanone 33.1 34.5 4.23 

8 Acetophenone 39.9 40.2 0.75 

9 2-Methyl-undecane  40.1 43.7 8.98 

10 5-Methyl-undecane  42.1 44.2 4.99 

11 Nonanal 70.9 67.3 5.08 

12 2-Octenal 73.6 67.6 8.15 

13 2-Nonanone 86.0 97 12.79 

14 Trans-decahydro-naphthalene 98.0 89 9.18 

15 2-Ethyl-1,3-dimethyl-benzene 101.3 106.8 5.43 

16 4-Ethyl-1,2-dimethyl-benzene 103.4 113.9 10.15 

17 2,2,7,7-Tetramethyloctane 131.8 120.1 8.88 

18 1-Ethyl-3,5-dimethyl-benzene 132.8 136.4 2.71 

19 Butyl-benzene 140.0 139 0.71 

20 1,3-Diethyl-benzene 153.3 146.8 4.24 

21 1-Methyl-2-(1-methylethyl)-benzene 181.3 160.7 11.36 

22 1-Methyl-4-(1-methylethyl)-benzene 219.9 250.7 14.01 

23 2-Octanone 229.3 238 3.79 

24 Octanal 275.9 250.4 9.24 

 Validation t set    

25 Benzothiazole 15.9 17.8 11.95 

26 1-Hexanol, 27.6 22.6 18.12 

27 cis-Decahydro-naphthalene 98.0 110 12.24 

28 1-Methyl-3-propyl-benzene 138.6 159.4 15.01 

29 1-Methyl-3-(1-methylethyl)-benzene 209.3 163.7 21.79 

 
Computer hardware and software: All calculations were

run on a HP Laptop computer with AMD Turion64X2 processor

with windows XP operating system. The optimizations of

molecular structures were done by the HyperChem 7.0 (AM1
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method) and descriptors were calculated by Dragon Version

3.0 software's. MINITAB software version 14 was used for

the simple PLS analysis. Cross validation, GA-PLS, GA-KPLS

and other calculation were performed in the MATLAB (Version

7, Mathworks, Inc.) environment.

Genetic algorithm: A detailed description of the genetic

algorithm can be found in the literature23-25. Genetic algorithm

is simulated methods based on ideas from Darwin's theory of

natural selection and evolution (the struggle for life). In genetic

algorithm a chromosome (or an individual) can be defined as

an enciphered entity of a candidate solution, which is expressed

as a set of variables. Genetic algorithm consist of the following

basic steps: (1) A chromosome is represented by a binary bit

string and an initial population of chromosomes is created in

a random way; (2) A value for the fitness function of each

chromosome is evaluated; (3) Based on the values of the fitness

functions, the chromosomes of the next generation are produced

by selection, crossover and mutation operations. The fitness

function was proposed by Depczynski et al.26. The parameters

for the algorithm are reported in Table -2.

TABLE-2 
PARAMETERS OF THE GENETIC ALGORITHM 

Population size 30 chromosomes 

On average, five variables per chromosome in the original population 

Regression method PLS, KPLS 

Cross validation Leave-group-out 

Number subset 4 

Maximum number of variables selected in the 
same chromosome 

PLS, 30 

Elitism True 

Crossover Multi point 

Probability of crossover 50 % 

Mutation Multi point 

Probability of mutation 1 % 

Maximum number of components PLS, 10 

Number of runs 100 

 

Non-linear models

Kernel partial least squares (KPLS): The KPLS method

is based on the mapping of the original input data into a high

dimensional feature space ℑ where a linear PLS model is

created. By nonlinear mapping ℑ∈Φ→ℜ∈Φ )x(x:
n , a

KPLS algorithm can be derived from a sequence of NIPALS

steps and has the following formulation27: (1) Initialize score

vector w as equal to any column of Y; (2) Calculate scores u =

ΦΦTw and normalize u to ||u|| = 1, where Φ is a matrix of

regressors; (3) Regress columns of Y on u: c = YTu, where c is

a weight vector; (4) Calculate a new score vector w for Y: w =

Yc and then normalize w to ||w||=1; (5) Repeat steps 2-4 until

convergence of w; (6) Deflate   and Y matrices:

ΦΦT = (Φ − uuTΦ) (Φ − uuTΦ)T (1)

Y = Y - uuTY (2)

(7) Go to step 1 to calculate the next latent variable.

Without explicitly mapping into the high-dimensional

feature space, a kernel function can be used to compute the

dot products as follows:

k(xi,xj) = Φ(xi)
TΦ(xj) (3)

ΦΦΤ represents the (n × n) kernel Gram matrix K of the

cross dot products between all mapped input data points Φ(xi),i

= 1,...,n. The deflation of the ΦΦT = K matrix after extraction

of the u components is given by:

K = (I - uuT)K(I - uuT) (4)

where, I is an m-dimensional identity matrix. Taking into

account the normalized scores u of the prediction of KPLS

model on training data Ŷ is defined as:

Ŷ = KW(UTKW)-1UTY = UUTY (5)

For predictions on new observation data
t

Ŷ , the regression

can be written as:

t
Ŷ = KtW(UTKW)-1UTY (6)

where, Kt is the test matrix whose elements are Kij = K(xi, xj)

where xi and xj present the test and training data points,

respectively.

RESULTS AND DISCUSSION

Linear model

Results of the genetic algorithm-partial least squares

(GA-PLS) model: To reduce the original pool of descriptors

to an appropriate size, the objective descriptor reduction was

performed using various criteria. Reducing the pool of descri-

ptors eliminates those descriptors which contribute either no

information or whose information content is redundant with

other descriptors present in the pool. After this process, 1099

descriptors were remained. These descriptors were employed to

generate the models with the GA-PLS and GA-KPLS program.

The best model is selected on the basis of the highest multiple

correlation coefficient leave-group-out cross validation (LGO-

CV) (Q2), the least root mean squares error (RMSE) and relative

error (RE) of prediction and simplicity of the model. These

parameters are probably the most popular measure of how

well a model fits the data. The best GA-PLS model contains 5

selected descriptors in 3 latent variables space. These descrip-

tors were obtained constitutional descriptors [(sum of atomic

polarizabilities (scaled on carbon atom (SP)] and sum of atomic

van der Waals volumes [scaled on carbon atom) (Sv)], 3D-

MoRSE descriptors [3D-MoRSE - signal 02 / weighted by

atomic Sanderson electronegativities (Mor02e)], charge

descriptors [Relative positive charge (RPCG)] and quantum

chemical descriptors (polarizibility). For this in general, the

number of components (latent variables) is less than number

of independent variables in PLS analysis. The obtained statistic

parameters of the GA-PLS model were shown in Table-3. The

PLS model uses higher number of descriptors that allow the

TABLE-3 
STATISTICAL PARAMETERS OF DIFFERENT CONSTRUCTED QSPR MODELS 

Training set Validation set 
Model 

R2 Q2 RE RMSE N R2 Q2 RE RMSE N 

GA-PLS 0.887 0.881 11.98 18.40 24 0.782 0.784 26.87 38.07 5 

GA-KPLS 0.958 0.958 6.84 10.63 24 0.868 0.875 15.82 23.17 5 

 

Vol. 24, No. 1 (2012)       Vapour Pressure of Atmospheric Nanoparticles Using Genetic Algorithm-Partial Least Squares and Genetic Algorithm  293



model to extract better structural information from descriptors

to result in a lower prediction error.

Non-linear model

Results of the genetic algorithm-kernel partial least

squares (GA-KPLS) model: In this paper a radial basis kernel

function, k(x,y) = exp(||x-y||2/c), was selected as the kernel

function with c = rmσ2 where r is a constant that can be deter-

mined by considering the process to be predicted (here r set to

be 1), m is the dimension of the input space and   σ2 is the

variance of the data28. It means that the value of c depends on

the system under the study. The 4 descriptors in 1 latent variables

space chosen by GA-KPLS feature selection methods were

contained. These descriptors were obtained constitutional

descriptors [number of hydrogen atoms (nH)], functional group

counts [number of hydroxyl groups (nROH)], molecular prop-

erties [topological polar surface area using N, O, S, P polar

contributions (TPSA (Tot)] and quantum chemical descriptors

[lowest unoccupied molecular orbital (LUMO)]. For the cons-

tructed model, four general statistical parameters were selected

to evaluate the prediction ability of the model for the pressure.

The statistical parameters R2, Q2, RE and RMSE were obtained

for proposed models. Each of the statistical parameters

mentioned above were used for assessing the statistical signi-

ficance of the QSPR model. Inspection of the results reveals a

higher Q2 and lowers other values parameter for the training

and validation sets GA-KPLS compared with their counterparts

for GA-PLS. The GA-PLS linear model has good statistical

quality with low prediction error, while the corresponding

errors obtained by the GA-KPLS model are lower. Plots of

predicted pressure versus experimental pressure values by

GA-KPLS for training and validation set are shown (Fig. 1).

Obviously, there is a close agreement between the experimental

and predicted pressure and the data represent a very low scattering

around a straight line with respective slope and intercept close

to one and zero. This clearly shows the strength of GA-KPLS

as a nonlinear feature selection method. This result indicates

that the vapour pressure of nanoparticles possesses some non-

linear characteristics.
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Fig. 1. Plot of predicted pressure obtained by GA-KPLS against the

experimental values

Model validation: Validation is a crucial aspect of any

QSPR modeling29. The accuracy of proposed models was

illustrated using the evaluation techniques such as leave-group-

out cross validation (LGO-CV) procedure.

Cross validation technique: Cross validation is a popular

technique used to explore the reliability of statistical models.

Based on this technique, a number of modified data sets are

created by deleting in each case one or a small group (leave-

some-out) of objects. For each data set, an input-output model

is developed, based on the utilized modeling technique. Each

model is evaluated, by measuring its accuracy in predicting

the responses of the remaining data (the ones or group data

that have not been utilized in the development of the model)30.

In particular, the leave-group out procedure was utilized in

this study. A QSPR model was then constructed on the basis

of this reduced data set and subsequently used to predict the

removed data. This procedure was repeated until a complete

set of predicted was obtained. The statistical significance of

the screened model was judged by the correlation coefficient

(Q2). The predictive ability was evaluated by the cross validation

coefficient (Q2 or R2
cv), which is based on the prediction error sum

of squares (PRESS) and was calculated by following equation:
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where, yi, yi
^, and y– were the experimental, predicted and mean

vapour pressure values of the samples, respectively. The accuracy

of cross validation results is extensively accepted in the literature

considering the Q2 value. In this sense, a high value of the

statistical characteristic (Q2 > 0.5) is considered as proof of

the high predictive ability of the model. However, this assumption

is in many cases incorrect and can be that exist the lack of the

correlation between the high LGO-CV Q2 and the high predictive

ability of QSPR models has been established and corroborated31.

Thus, the high value of LGO-CV Q2 appears to be necessary

but not sufficient condition for the models to have a high

predictive power. These authors stated that an external set is

necessary. As a next step, further analysis was also followed

for pressure of the new set of compounds using the developed

QSPR model.

Validation through the external validation set: Validating

QSPR with external data (i.e. data not used in the model develop-

ment) is the best method of validation. However the availability

of an independent external validation set of several compounds

is rare in QSPR. Thus, the predictive ability of a QSPR model

with the selected descriptors was further explored by dividing

the full data set. The predictive power of the models developed

on the selected training set is estimated on the predicted values

of validation setchemicals. The data set was randomly divided

into training (calibration and prediction sets) and validation

sets after sorting based on the vapour pressure values. The

training set consisted of 24 molecules and the validation set,

consisted of 5 molecules. The training set was used for model

development, while the validation set in which its molecules

have no role in model building was used for evaluating the

predictive ability of the models for external set. Table-3 shows

the statistical parameters for the compounds obtained by

applying the four models to the training and validation sets.

The whole of these data clearly displays a significant improve-
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ment of the QSPR model consequent to non-linear statistical

treatment and a substantial independence of model prediction

from the structure of the test molecule. In the above analysis,

the descriptive power of a given model has been measured by

its ability to predict pressure of unknown molecules. For

instance, as to prediction ability, it can be observed in Fig. 1

that scattering of data points from the ideal trend in validation

set is poor.

Interpretation of descriptors: The vapour pressure of a

compound is determined by different interactions between

molecules. These interactions include dispersion interaction,

dipole-dipole interaction, dipole-induced interaction and

hydrogen bonding interaction.

Constitutional descriptors are most simple and commonly

used descriptors, reflecting the molecular composition of a

compound without any information about its molecular

geometry. The most common constitutional descriptors are

number of atoms, number of bound, absolute and relative

numbers of specific atom type, absolute and relative numbers

of single, double, triple and aromatic bond, number of rings,

number of rings divided by the number of atoms or bonds,

number of benzene ring, number of benzene ring divided by

the number of atom, molecular weight and average molecular

weight.

The hydrogen bonding a measure of the tendency of a

molecule to form hydrogen bonds. This is related to number

of hydrogen atoms (nH). Hydrogen-bonding may be divided

into an electrostatic term and a polarization/charge transfer

term. A particularly strong type of polar interaction occurs in

molecules where a hydrogen atom is attached to an extremely

electron-hungry atom such as oxygen, nitrogen or fluorine.

3D-MoRSE (3D-Molecule representation of structures

based on electron diffraction) descriptors are based on the idea

of obtaining information from the 3D atomic coordinates by

the transform used in electron diffraction studies. These descri-

ptors are calculated by summing atom weights viewed by a

divergent angular scattering function.

Although constitutional descriptors, 3D-MoRSE descri-

ptors and functional group are often successful in rationalizing

vapour pressure of nanoparticles, they cannot account for

conformational changes and they do not provide information

about electronic influence through bonds or across space. For

that reason, quantum chemical descriptors are used in devel-

oping QSPR.

Quantum chemical descriptors can give great insight into

structure and reactivity and can be used to establish and

compare the conformational stability, chemical reactivity and

inter-molecular interactions. They include thermodynamic

properties (system energies) and electronic property (LUMO

energy). Quantum chemical descriptors were defined in terms

of atomic charges and used to describe electronic aspects both

of the whole molecule and of particular regions, such atoms,

bonds and molecular fragments. Electronic properties may play

a role in the magnitude in a biological activity, along with

structural features encoded in indexes. LUMO as an electron

acceptor represents the ability to obtain an electron. The

energy of the LUMO is directly related to the electron affinity

and characterizes the susceptibility of the molecule toward

attack by nucleophiles. The LUMO energy can be interpreted

as a measure of charge transfer interactions and/or of hydrogen

bonding effects. Electron affinity was also shown to greatly

influence the chemical behaviour of compounds, as demon-

strated by its inclusion in the QSPR.

Polar functional groups account for many of the dipole-

dipole, dipole-induced dipole and hydrogen bond interactions.

Topological polar surface area (TPSA) also accounts for the

steric shape of a molecule. The topological polar surface area

is a surface descriptor, defined as the part of the surface area

of a molecule contributed by nitrogen, oxygen and connected

hydrogen atoms. As such, it is clearly related to the capacity

of a drug to form hydrogen bonds.

Charge descriptors were defined in terms of atomic

charges and used to describe electronic aspects both of the

whole molecule and of particular regions, such atoms, bonds

and molecular fragments. Electrical charges in the molecule

are the driving force of electrostatic interactions and it is well

known that local electron densities or charge play a funda-

mental role in many physico-chemical properties and receptors-

ligand binding affinity. Thus, charge based descriptors have

been widely employed as chemical reactivity indices or as

measures of weak intermolecular interactions. Many quantum

chemical descriptors are derived from the partial charge distri-

bution in a molecule or from the electron densities on particular

atoms. Relative positive charge (RPCG) is the quotient between

maximum atomic positive charge in the molecule and positive

atomic charge in the molecule. It contains electronic information

to describe the molecule and therefore it encodes features

responsible for interaction between molecules and the modified

reversed stationary phase32.

From the above discussion, it can be seen that the particle

size, hydrogen bonding and electrostatic interactions are the

likely three factors controlling the pressure of these nano-

particles. All the descriptors involved in the model, which have

explicit physical meaning, may account for the structure

responsible for the vapour pressure of these compounds.

Conclusion

In this research, an accurate QSPR models for estimating

the vapour pressure of atmospheric nanoparticles were deve-

loped by employing the linear model (GA-PLS) nonlinear

model (GA-KPLS). The most important molecular descriptors

selected represent the constitutional descriptors, functional

group, molecular properties, charge descriptors and quantum

chemical descriptors that are known to be important in the

vapour pressure of nanoparticles. Two models have good

predictive capacity and excellent statistical parameters. A

comparison between these models revealed the superiority of

the GA-KPLS to GA-PLS model. It is easy to notice that there

was a good prospect for the GA-KPLS application in the QSPR

modeling. This indicates that vapour pressure of nanoparticles

possesses some nonlinear characteristics. The results showed

that the GA-KPLS model can be effectively used to describe

the molecular structure characteristic of these compounds. It

can also be used successfully to estimate the vapour pressure

for new compounds or for other compounds whose experi-

mental values are unknown.
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