
INTRODUCTION

For decades, chromatographers have utilized nano-

metersized materials in the development of highly efficient

chromatographic stationary phases. These materials offer a

variety of advantages from improved mass transfer charac-

teristics to greater stability of traditional polymer phases by

incorporating nanoparticle additives. Nanoparticles on the

order of 10 nm in diameter have also been used to stabilize

polymer stationary phases for gas chromatography, similar in

concept to that for support coated open tubular columns1. The

unaccompanied use of nanoparticles as chromatographic

stationary phases has been put forth. Both silica and polymer

nanoparticles have been applied in electrophoretic chroma-

tography as a stationary phase2,3. In high-speed separations,

the need for more selective and efficient stationary phases

increases as scientists push the envelope of chromatography

and hence the need to focus on novel stationary phase develop-

ment. The call for new stationary phases for gas chromatography

is not limited to high-speed gas chromatography (HS-GC) but

also complementary separation techniques such as compre-

hensive 2-D gas chromatography (GC × GC)4-6 as well as

miniaturized chromatographic systems7.

 The GC × GC system relies upon having a highly efficient

stationary phase within a short, smaller dimensional capillary

as the second column and a more traditionally sized capillary
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for the first column. The two columns should provide comple-

mentary chemical selectivity in order to more fully utilize the

peak capacity of the 2-D separation. Often, a non-polar

stationary phase is used for the first column, but since the

square capillary monolayer-protected gold nanoparticle (MPN)

column is more appropriately configured for the second column,

a polar poly(ethylene glycol) column was used for the first

column. This reversed stationary phase pairing provided an

excellent comprehensive 2-D separation for the 23-component

mixture in the present investigation8.

The dodecanethiol monolayer-protected gold nano-

particles (MPNs) were used stationary phase for open tubular

gas chromatography. The nanoparticles we have been studying

are known as gold-centered monolayer protected nanoparticles

(MPNs) that consist of a gold core with a thiol-linked mono-

layer of organic molecules on the surface of the gold core9.

Monolayer-protected gold nanoparticles are of particular

interest because their properties can be influenced by the struc-

ture of the monolayer forming molecules and the surface

monolayer stabilizes them relative to aggregation as compared

to bare gold nanoparticles10. The selectivity achieved for

chemical sensing with a gold-centered MPN is dominated by

the chemical structure and functionality selected for the organic

surface layer11. Potential areas of application for MPNs are

demonstrated including complementary separations such as
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GC × GC, exploration of a model system for use in micro-

fabricated gas chromatography systems, as well as efficient

single dimension, high-speed GC separations. Microfabricated

GC systems result in angular or square cornered channels in

contrast to the traditional round capillary used for bench-top

open tubular GC columns12.

Quantitative structure-retention relationship studies have

received much attention in chemometrics, biological chemistry,

medicinal chemistry and many other fields. Quantitative structure-

retention relationship models are mathematical equations

relating chemical structure to their property. A number of

reports, deals with QSRR retention time calculation of several

compounds have been published in the literature13,14. The

QSRR models apply to partial least squares method often

combined with genetic algorithms for feature selection15,16.

Because of the complexity of relationships between the

property of molecules and structures, nonlinear models are

also used to model the structure-property relationships.

Levenberg-Marquardt artificial neural network is nonparametric

nonlinear modeling technique that has attracted increasing

interest. In recent years, nonlinear kernel-based algorithms as

kernel partial least squares (KPLS) have been proposed17, 18.

The kernel partial least squares can efficiently compute latent

variables in the feature space by means of integral operators

and nonlinear kernel functions19. Compared to other non-

linear methods, the main advantage of the kernel based algo-

rithm is that it does not involve nonlinear optimization. It

essentially requires only linear algebra, making it as simple as

the conventional linear PLS. In addition, because of its ability

to use different kernel functions, KPLS can handle a wide

range of non-linearities. In the present study, GA-PLS, GA-

KPLS and L-M ANN were employed to generate QSRR

models that correlate the structure of nanoparticles with

observed retention time. The present study is a first approach

on QSRR of the nanoparticle compounds against the retention

time, using GA-PLS, GA-KPLS and L-M ANN.

EXPERIMENTAL

Data set: Retention time of 23 nanoparticle compounds

were taken from the literature8 are presented in Table-1. Sample

components are separated, identified and measured by the GC

× GC using the dodecanethiol MPN stationary phase within a

square capillary system as the second dimension separation.

A square deactivated silica capillary, 100 µm width, was used

for the production of the open tubular MPN column (Polymicro

Technologies, Phoenix, AZ, USA). All chromatograms were

obtained with an Agilent 6890 gas chromatograph using a

standard commercial FID system and injector with chem station

computer control (Agilent Technologies, Palo Alto, CA, USA).

The GC × GC separation was obtained using a 4 m poly(ethylene

glycol) column (200 µm i.d., 0.2 µm film) as the first column

at 34,000 Pa (40 cm/s) with 0.9 m of the dodecanethiol MPN

100 µm square capillary column as the second column operated

at 210,000 Pa (235 cm/s). The oven was held constant at 60 ºC

with the FID and inlet temperatures at 250 ºC. A 0.5 µL injection

was introduced with a 150:1 split on the inlet. The valve

injection onto the second column had a 15 ms wide injection

pulse width, a 1.3 µL loop with a 1s modulation period. In

this study, retention data was resulted by non polar capillary

[poly(ethylene glycol) column] used for QSRR research. The

retention time of these compounds was increased in the range

of 12.5 and 98.5 for both hexane and 1,2,4-trimethylbenzene,

respectively.

TABLE-1 
DATA SET AND THE CORRESPONDING OBSERVED AND 

PREDICTED RT VALUES BY L-M ANN 

Name RT Exp RT Cal RE SE 

Hexane 12.5 11.85 5.20 1.49 

Octane 15 15.46 3.07 1.33 

Chlorobutane 16.1 16 0.62 1.31 

Nonane 18 19.37 7.61 1.16 

1-Heptyne 19.7 17.38 11.78 1.25 

Benzene 20.2 20.67 2.33 1.11 

2-Pentanone 22 22.01 0.05 1.05 

Decane 25 22.47 10.12 1.03 

2-Butanol 27 28.61 5.96 0.76 

Toluene 28.5 28.94 1.54 0.75 

1-Propanol 29.1 29.19 0.31 0.74 

2-Hexanone 33.2 30.14 9.22 0.70 

Ethylbenzene 42.2 45.34 7.44 0.03 

p-Xylene 44.1 42.51 3.61 0.16 

1-Butanol 45.3 45.01 0.64 0.05 

Chlorobenzene 64.2 58.34 9.13 0.53 

4-Ethyltoluene 69 71.24 3.25 1.09 

Mesitylene 75.5 82.14 8.79 1.57 

1-Pentanol 84.5 80.24 5.04 1.48 

1,1,2-Trichloroethane 88.5 88.42 0.09 1.84 

3-Octanone 90.5 91.67 1.29 1.98 

Bromoheptane 92.3 93.16 0.93 2.05 

1,2,4-Trimethylbenzene 98.5 95.07 3.48 2.13 

RT = Retention time 

 
Computer hardware and software: All calculations were

run on a HP laptop computer with AMD turion64X2 processor

with windows XP operating system. The optimizations of

molecular structures were done by the HyperChem 7.0 (AM1

method) and descriptors were calculated by Dragon version

3.0 software's. MINITAB software version 14 was used for

the simple PLS analysis. Cross validation, GA-PLS, GA-KPLS

and other calculation were performed in the MATLAB (version

7, mathworks, Inc.) environment.

Genetic algorithm: A detailed description of the genetic

algorithm can be found in the literature20-22. Genetic algorithm

is simulated methods based on ideas from Darwin's theory of

natural selection and evolution (the struggle for life). In genetic

algorithm a chromosome (or an individual) can be defined as

an enciphered entity of a candidate solution, which is expressed

as a set of variables. Genetic algorithm consist of the following

basic steps: (1) A chromosome is represented by a binary bit

string and an initial population of chromosomes is created in

a random way; (2) A value for the fitness function of each

chromosome is evaluated; (3) Based on the values of the fitness

functions, the chromosomes of the next generation are produced

by selection, crossover and mutation operations. The fitness

function was proposed by Depczynski et al.23. The parameter

algorithm reported in Table-2.

Non-linear models

Kernel partial least squares: The KPLS method is based

on the mapping of the original input data into a high dimensional
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feature space ℑ where a linear PLS model is created. By non-

linear mapping Φ: x∈ℜn→ Φ (x)∈ℑ, a KPLS algorithm

can be derived from a sequence of NIPALS steps and has the

following formulation24: (1) Initialize score vector w  as equal

to any column of Y; (2) Calculate scores u= ΦΦTw  and

normalize u to ||u|| = 1, where Φ is a matrix of regressors; (3)

Regress columns of Y on u: c = YTu, where c is a weight vector;

(4) Calculate a new score vector w for Y: w = Yc and then

normalize w to ||w||=1; (5) Repeat steps 2-4 until convergence

of w; 6. Deflate ΦΦΤ and Y matrices:

ΦΦT= (Φ-uuTΦ)(Φ-uuTΦ)T (1)

Y = Y - uuTY  (2)

(7) Go to step 1 to calculate the next latent variable.

Without explicitly mapping into the high-dimensional

feature space, a kernel function can be used to compute the

dot products as follows:

k(xi, xj)=Φ(xi)
TΦ(xj) (3)

ΦΦΤ represents the (n × n) kernel Gram matrix K of the

cross dot products between all mapped input data points Φ(xi),

i=1,....,n. The deflation of the ΦΦΤ = K matrix after extraction

of the u components is given by:

K = (I - uuT)K(I - uuT) (4)

where I is an m-dimensional identity matrix. Taking into

account the normalized scores u of the prediction of KPLS

model on training data Ŷ is defined as:

Ŷ = KW(UTKW)-1UTY=UUTY (5)

For predictions on new observation data Ŷ , the regression

can be written as:

t
Ŷ =KtW(UTKW)-1UTY (6)

where, Kt is the test matrix whose elements are Kij =K(xi, xj)

where xi and xj present the test and training data points,

respectively.

TABLE-2 
PARAMETERS OF THE GENETIC ALGORITHM 

Population size  30 chromosomes 

On average, five variables per chromosome in the 
original population 

 

Regression method  PLS, KPLS 

Cross validation  Leave-one-out 

Number subset  24 

Maximum number of variables selected in the 
same chromosome 

(PLS, 30) 

Elitism  True 

Crossover  Multi Point 

Probability of crossover 50% 

Mutation  Multi Point 

Probability of mutation  1% 

Maximum number of components PLS, 10 

Number of runs  100 

 
Artificial neural network: An artificial neural network

(ANN) with a layered structure is a mathematical system that

stimulates the biological neural network consist of computing

units named neurons and connections between neurons named

synapses25-27. Input or independent variables are considered

as neurons of input layer, while dependent or output variables

are considered as output neurons. Synapses connect input

neurons to hidden neurons and hidden neurons to output

neurons. The strength of the synapse from neuron i to neuron

j is determined by mean of a weight, Wij. In addition, each

neuron j from the hidden layer and eventually the output

neuron, are associated with a real value bj, named the neuron's

bias and with a nonlinear function, named the transfer or acti-

vation function. Because the artificial neural networks (ANNs)

are not restricted to linear correlations, they can be used for

nonlinear phenomena or curved manifolds25. Back propagation

neural networks (BNNs) are most often used in analytical

applications26. The back propagation network receives a set of

inputs, which is multiplied by each node and then a nonlinear

transfer function is applied. The goal of training the network

is to change the weight between the layers in a direction to

minimize the output errors. The changes in values of weights

can be obtained using eqn. (7):

∆Wij,n = Fn + α∆Wij,n-1   (7)

where ∆Wij is the change in the weight factor for each network

node, α is the momentum factor and F is a weight update

function, which indicates how weights are changed during the

learning process. There is no single best weight update function

which can be applied to all nonlinear optimizations. One need

to choose a weight update function based on the characteristics

of the problem and the data set of interest. Various types of

algorithms have been found to be effective for most practical

purposes such as Levenberg-Marquardt (L-M) algorithm.

Levenberg-Marquardt algorithm: While basic back

propagation is the steepest descent algorithm, the Levenberg-

Marquardt algorithm28 is an alternative to the conjugate methods

for second derivative optimization. In this algorithm, the update

function, Fn, can be calculated using eqn. (8) and (9):

F0 = – g0   (8)

Fn = –[JT × J + µI]-1 × JT × e   (9)

where, J is the Jacobian matrix, µ is a constant, I is an identity

matrix and e is an error function29.

RESULTS AND DISCUSSION

Linear model

Results of the GA-PLS model: To reduce the original

pool of descriptors to an appropriate size, the objective

descriptor reduction was performed using various criteria.

Reducing the pool of descriptors eliminates those descriptors

which contribute either no information or whose information

content is redundant with other descriptors present in the pool.

After this process, 1104 descriptors were remained. These

descriptors were employed to generate the models with the

GA-PLS and GA-KPLS program. The best model is selected

on the basis of the highest multiple correlation coefficient

leave-group-out cross validation (LGO-CV) (Q2), the least root

mean squares error (RMSE), standard error (SE), absolute error

(AbsE) and relative error (RE) of prediction and simplicity of

the model. These parameters are probably the most popular

measure of how well a model fits the data. The best GA-PLS

model contains 5 selected descriptors in 2 latent variables

space. These descriptors were obtained constitutional descriptors

(sum of atomic van der Waals volumes [scaled on carbon atom)

(Sv)], functional group (number of donor atoms for H-bonds

(N and O) (nHDon), 3D-MoRSE descriptors (signal 1/weighted

by atomic van der Waals volumes (Mor1v), atom-centred fragments

[H attached to C1(sp3)/C0(sp2) (H-047) and quantum chemical
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descriptors (dipole moment (µ)]. For this in general, the number

of components (latent variables) is less than number of inde-

pendent variables in PLS analysis. The obtained statistic

parameters of the GA-PLS model were shown in Table-3. The

PLS model uses higher number of descriptors that allow the

model to extract better structural information from descriptors

to result in a lower prediction error.

TABLE-3 
STATISTICAL PARAMETERS OF DIFFERENT  

CONSTRUCTED QSRR MODELS 

Model R2 Q2 RE AbsE RMSE SE N 

GA-PLS 0.864 0.864 10.48 3.94 5.23 3.82 23 

GA-KPLS 0.885 0.881 9.13 3.55 4.67 3.20 23 

L-M ANN 0.984 0.980 4.41 1.85 2.59 1.11 23 

 

Non-linear models

Results of the GA-KPLS model: In this paper a radial

basis kernel function, k(x,y) = exp (||x-y||2/c), was selected as

the kernel function with c = rmσ2 where r is a constant that

can be determined by considering the process to be predicted

(here r set to be 1), m is the dimension of the input space and

σ2 is the variance of the data30. It means that the value of c

depends on the system under the study. The 4 descriptors in 1

latent variables space chosen by GA-KPLS feature selection

methods were contained. These descriptors were obtained

constitutional descriptors [number of carbon atoms (nC)],

WHIM descriptors (A total size index / weighted by atomic

van der Waals volumes) (Av), atom-centred fragments (H

attached to C1 (sp3)/C0 (sp2) (H-047)) and quantum chemical

descriptors [high occupied molecular orbital (HOMO)]. Table-3

shows the statistical parameters of the results, attained by these

models studies for the same set of nanoparticle compounds.

The RMSE values of the GA-KPLS model was much lower

than GA-PLS model. From this table, it can be noticed that

the GA-KPLS model gives the highest square correlation

coefficient (R2) values, so this model provides the most satis-

factory results, compared with the results obtained from the

GA-PLS model. The data presented in Table-3 indicate that

the GA-PLS linear model have good statistical quality with

low prediction error, while the corresponding errors obtained

by the GA-KPLS model are lower. Consequently, this GA-

KPLS approach currently constitutes the most accurate method

for predicting the retention time of the nannoparticle comp-

ounds than that of the GA-PLS method. This suggests that

GA-KPLS hold promise for applications in choosing of variable

for L-M ANN systems. This result indicates that the retention

time of nanoparticle compounds possesses some non-linear

characteristics.

Results of the L-M ANN model: With the aim of improving

the predictive performance of nonlinear QSRR model, L-M

ANN modeling was performed. Descriptors of GA-KPLS

model were selected as inputs in L-M ANN model. The network

architecture consisted of four neurons in the input layer corres-

ponding to the four mentioned descriptors. The output layer

had one neuron that predicts the retention time. A MATLAB

program was written to change the number of neurons in the

hidden layer from 2 to 7, the learning rate from 0.001 to 0.1

with a step of 0.001 and the momentum from 0.1 to 0.99 with

a step of 0.01. The root mean square errors was calculated for

all of the possible combination of values for the mentioned

variables in leave-group-out cross validation (LGO-CV). It

was realized that the RMSE is minimum when one neuron

were selected in the hidden layer and the learning rate and the

momentum values were 0.4 and 0.2, respectively. Finally, the

number of iterations was optimized with the optimum values

for the variables. It was realized that after 15 iterations, the

RMSE was minimum. The values of experimental, calculated,

per cent relative error and absolute error are shown in Table-

1. For the constructed model, six general statistical parameters

were selected to evaluate the prediction ability of the model

for the retention time. Table-3 shows the statistical parameters

for the compounds obtained by applying models. The R2, Q2,

RMSE, RE, SE, AbsE and RE were obtained for proposed

models. Each of the statistical parameters mentioned above

were used for assessing the statistical significance of the QSRR

model. The statistical parameters obtained by LGO-CV for L-

M ANN, GA-KPLS and the linear QSRR model are compared

in Table-3. Inspection of the results of the table reveals a higher

R2 and Q2 values and lower RMSE and RE for L-M ANN

model compared with their counterparts for GA-KPLS and

linear models. Plots of predicted retention time versus experi-

mental retention time values by L-M ANN are shown in Fig.

1. Obviously, there is a close agreement between the experi-

mental and predicted retention time and the data represent a

very low scattering around a straight line with respective slope

and intercept close to one and zero. This clearly shows the

strength of L-M ANN as a nonlinear feature selection method.

The key strength of L-M ANN is their ability to allow for

flexible mapping of the selected features by manipulating their

functional dependence implicitly. Neural network handles both

linear and nonlinear relationship without adding complexity

to the model. This capacity offset the large computing time

required and complexity of L-M ANN model with respect other

models.
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Fig. 1. Plot of predicted retention time obtained by L-M ANN against the

experimental values

Model validation: Validation is a crucial aspect of any

QSPR/QSRR modeling31-33. The accuracy of proposed models

was illustrated using the evaluation techniques such as leave-

group-out cross validation (LGO-CV) and leave-One-out cross
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validation (LOO-CV). In this study, we have used LGO-CV

for GA-PLS and GA-KPS models and LOO-CV for L-M ANN

model.

Cross validation technique: Cross validation is a popular

technique used to explore the reliability of statistical models.

Based on this technique, a number of modified data sets are

created by deleting in each case one or a small group (leave-

some-out) of objects. For each data set, an input-output model

is developed, based on the utilized modeling technique. Each

model is evaluated, by measuring its accuracy in predicting

the responses of the remaining data (the ones or group data

that have not been utilized in the development of the model)
34,35. A QSRR model was then constructed on the basis of this

reduced data set and subsequently used to predict the removed

data. This procedure was repeated until a complete set of

predicted was obtained. The statistical significance of the

screened model was judged by the correlation coefficient (Q2).

The predictive ability was evaluated by the cross validation

coefficient (Q2 or R2
cv), which is based on the prediction error

sum of squares (PRESS) and was calculated by following

equation:

( )

( )∑

∑

=

−

=

−

−

−=≡
n

1i

2

i

n

1i

2^

ii

22

cv

yy

yy

1QR
 (10)

where yi,
^

i
y and y– were the experimental, predicted and mean

retention time values of the samples, respectively. The accuracy

of cross validation results is extensively accepted in the litera-

ture considering the Q2 value. In this sense, a high value of the

statistical characteristic (Q2 > 0.5) is considered as proof of

the high predictive ability of the model36-38. The result clearly

displays a significant improvement of the QSRR model conse-

quent to non-linear statistical treatment and a substantial

independence of model prediction from the structure of the

test molecule. In the above analysis, the descriptive power of

a given model has been measured by its ability to predict

retention of unknown nanoparticles. For instance, as to

prediction ability, it can be observed in Fig. 1 that scattering

of data points from the ideal trend in molecule set is poor.

Brief description of the selected molecular descriptors:

In GC × GC, the entire sample is submitted to two online GC

separations involving different properties of analytes, i.e., the

volatility related to the carbon atom number and the polarity

related to the chemical group. In this research, retention data

was resulted non polar capillary [capillary (poly(ethylene

glycol) column)] used to QSRR models. In the chromatogra-

phic retention of compounds in the non polar or low polarity

stationary phases two important types of interactions contribute

to the chromatographic retention of the compounds i.e., the

induction and dispersion forces. The dispersion forces are

related to interaction of several intermolecular forces such as

dispersion (or London forces), orientation (dipole-dipole or

keesom forces) while the induced forces are related to the

dipolar moment, which should stimulate dipole-induced dipole

or debye forces interactions.

Constitutional descriptors are most simple and commonly

used descriptors, reflecting the molecular composition of a

compound without any information about its molecular

geometry. The most common constitutional descriptors are

number of atoms, number of bound, absolute and relative

numbers of specific atom type, absolute and relative numbers

of single, double, triple and aromatic bound, number of ring,

number of ring divided by the number of atoms or bonds,

number of benzene ring, number of benzene ring divided by

the number of atom, molecular weight and average molecular

weight. Number of C atoms, the average bond order of a C

atom and the minimum atomic state energy for a C atom

quantify the bond strength between the C atoms. A molecule

locked in a rigid conformation due to strong intramolecular

interactions is in fact less free to move and is expected to have

a higher retention.

The hydrogen bonding a measure of the tendency of a

molecule to form hydrogen bonds. This is related to number

of hydrogen atoms. Hydrogen-bonding may be divided into

an electrostatic term and a polarization/charge transfer term.

A particularly strong type of polar interaction occurs in mole-

cules where a hydrogen atom is attached to an extremely

electron-attracting atom such as oxygen, nitrogen or fluorine.

Understandably, hydrogen bonding plays a significant role.

Hydrogen bonding not a true bond, but a very strong form of

dipole-dipole attraction.

3D-Molecule representation of structures based on electron

diffraction descriptors are based on the idea of obtaining

information from the 3D atomic coordinates by the transform

used in electron diffraction studies. These descriptors are

calculated by summing atom weights viewed by a divergent

angular scattering function.

Different hydrogen bond donors and acceptors are two

important parameters introduced to describe molecular

properties important for a nanoparticles pharmacokinetics.

The availability to form H bonds is an important parameter to

define the physico-chemical properties of a naoparticle

compounds.

The WHIM descriptors are built in such a way as to

capture the relevant molecular 3D information regarding the

molecular size, shape, symmetry and atom distribution with

respect to some invariant reference frame. WHIM descriptors

are quickly computed from the atomic positions of the

molecule atoms (hydrogens included). WHIM descriptors are

based on principal component analysis of the weighted cova-

riance matrix obtained from the atomic cartesian coordinates.

Although functional group, constitutional and WHIM descriptors

are often successful in rationalizing retention time of

nanoparticles, they cannot account for conformational changes

and they do not provide information about electronic influence

through bonds or across space. For that reason, quantum chemical

descriptors are used in developing QSRR.

Quantum chemical descriptors can give great insight into

structure and reactivity and can be used to establish and com-

pare the conformational stability, chemical reactivity and

inter-molecular interactions. They include thermodynamic

properties (system energies) and electronic properties (HOMO

energy). Quantum chemical descriptors were defined in terms

of atomic charges and used to describe electronic aspects both

of the whole molecule and of particular regions, such atoms,

bonds and molecular fragments. Electronic properties may play
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a role in the magnitude in a biological activity, along with

structural features encoded in indexes.

As expected, the model included HOMO energy to quantify

electronic effects of compounds. HOMO energy is a useful

descriptor that presents information on the distribution of   π

electron and explains π−π charge transfer interactions of

unsaturated compounds. HOMO energy plays a important role

in nucleophilic behaviour and it represents molecular reactivity

as a nucleophile. Good nucleophiles are those in which electrons

reside in high lying orbitals. Electron affinity was also shown

to greatly influence the chemical behaviour of compounds, as

demonstrated by its inclusion in the QSRR. The eigenvalue of

HOMO reflect the chemical activity of the molecule. HOMO

as an electron donor represents the ability to donate an electron.

Polar functional groups account for many of the dipole-

dipole, dipole-induced dipole and hydrogen bond interactions.

Dipole moment is the measure of polarity of the molecule.

Dipole moment describes the intramolecular electronic effect,

which may be related to molecular reactivity. The activity of a

molecule increases as the dipole moment is increases39-41. From

the above discussion, it can be seen that the particle size,

hydrogen bonding and electrostatic interactions are the likely

three factors controlling the retention of these nanoparticles.

All the descriptors involved in the model, which have explicit

physical meaning, may account for the structure responsible

for the retention time of these compounds.

Conclusion

In this research, an accurate QSRR model for estimating

the retention time of nanoparticle compounds was developed

by employing the one linear model (GA-PLS) and two non-

linear models (GA-KPLS and L-M ANN). The most important

molecular descriptors selected represent the constitutional,

functional group and quantum descriptors that are known to

be important in the retention of nanoparticles. Three models

have good predictive capacity and excellent statistical para-

meters. A comparison between these models revealed the

superiority of the GA-KPLS and L-M ANN to linear model. It

is easy to notice that there was a good prospect for the GA-

KPLS and L-M ANN application in the QSRR modeling. This

indicates that retention time of nanoparticles possesses some

nonlinear characteristics. In comparison with two non-linear

models, the results showed that the L-M ANN model can be

effectively used to describe the molecular structure characteristic

of these compounds. It can also be used successfully to estimate

the retention time for new compounds or for other compounds

whose experimental values are unknown.
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