

Comparison of N and S Doped TiO₂ Electrode for Dye Sensitized Solar Cells

S. WANG^{1,*}, Z.C. YU², L. HAN³, C.L. DAI¹ and J.Y. SONG¹

¹School of Earth Science, Northeast Petroleum University, Daqing, P.R. China
²School of Civil Engineering & Architecture, Northeast Petroleum University, Daqing, P.R. China
³College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qin Huang Dao, P.R. China

*Corresponding author: Fax: +86 459 6504757; Tel: +86 459 6504757; E-mail: yuzi7777@163.com

(Received: 8 December 2010;

Accepted: 15 September 2011)

AJC-10402

Doped TiO₂ semiconductor thin films were synthesized using N and S as photovoltaic property-enhancing impurities by micro-plasma oxidation method. The influence of the doping ions on the structural and microstructure of the TiO₂ films were investigated by X-ray diffraction, scanning electron microscopy and electrical impedance spectra. The results show that the dye-sensitized solar cell efficiency fabricated with doped TiO₂ is remarkably better than that of undoped TiO₂. Also, the performance of N-doped TiO₂ electrode is better than that of S-doped TiO₂ electrode in terms of V_{oc}, short circuit current density (J_{sc}) and power conversion efficiency. These phenomena were related to the surface area, crystalline structures and charge transfer kinetics modifications induced by non-metal-ion dopants.

Key Words: Thin film, Doped, Photoelectric performance, Microstructure.

INTRODUCTION

The photoelectric performance of dye-sensitized solar cells (DSSCs) is affected greatly by TiO₂ film electrode¹. Various prepared method of TiO₂ film have been studied, including sol-gel method, hydro-thermal synthesis and sputtering depositions²⁻⁴. However, most of these TiO₂ film electrodes were prepared by coating TiO₂ colloid on conductive glass and annealing at high temperature, which is not fast and simple enough to produce the necessary devices with large area⁵. A thin film technology, microplasma oxidation (MPO), can overcome the above-mentioned disadvantages commendably⁶. In this way, producing TiO₂ thin films only needs very short time and the prepared film presents good adherence to the substrates. So, in this paper, TiO₂ film is prepared by microplasma oxidation method.

In order to increase the performance of nanoporous TiO_2 electrodes, composite electrodes based on metal oxides and ions have been used in dye-sensitized solar cell, for example, $\text{SnO}_2/\text{TiO}_2^{7.8}$, $\text{TiO}_2/\text{ZrO}_2^{9}$, $\text{TiO}_2/\text{Al}_2\text{O}_3^{10}$, Zn^{2+} -, Fe^{3+} - and Pb^{2+} -doped TiO₂ electrodes^{11,12}. Asahi *et al.*¹³ firstly proved feasibility of nonmetal doping in TiO₂ by theory calculation. In present research, N- and S-doped TiO₂ films was prepared by microplasma oxidation using NH₃·H₂O and thiourea as N- and S-doped precursors. Moreover, the photoelectric performance of the N- and S-doped TiO₂ electrodes is compared.

EXPERIMENTAL

Preparation of N- and S-doped TiO₂ film: A titanium sheet (99.9 % in purity) washed in HF-HNO₃ (1:1, v/v) aqueous solution was selected as an anode with a reaction area of 25 mm \times 10 mm \times 0.5 mm and a copper sheet was introduced as a cathode. TiO₂ film was prepared by using 0.5 mol L⁻¹ (NH₄)₂SO₄ solutions as electrolyte. The N-doped TiO₂ prepared by adding 6 mL L⁻¹ NH₃·H₂O into above (NH₄)₂SO₄ solutions was denoted by N-TiO₂. The S-doped TiO₂ prepared by adding 10 g L⁻¹ thiourea into above (NH₄)₂SO₄ solutions was denoted by S-TiO₂. The MPO process was conducted for 10 min in 2 stages. A constant current density (14 A dm⁻²) was first performed until a designated anode-to-cathode voltage (245 V) was reached and then the voltage was maintained until the end of oxidation, with a gradual decrease in the current.

Characterization of thin TiO₂ film: The surface morphology of the films was observed on a MX2600FE scanning electron microscope (SEM) from Cam Scan of England. The X-ray diffraction (XRD) with a CuK_{α} source (D/max-r B from Ricoh of Japan) was applied to study the crystalline structure of the films.

Solar-cell assembly and photoelectrochemical characteristics: The TiO₂ film was immersed in 0.3 mmol L⁻¹ *cis*di(thiocyanate)-*bis*(2,2-bipyridyl-4,4-dicarboxylate) ruthenium(II) in ethanol solution at room temperature for 24 h. The dye-coated TiO₂ film was used as working electrode and transparent conducting glass (< 20 Ω/\Box) was used as counter electrodes. The electrolyte was a solution of 0.5 mol L⁻¹ potassium iodide and 0.05 mol L⁻¹ iodine in a mixture of *ca*. 80 % acetonitrile and 20 % ethylene glycol. Electrochemical impedance spectroscopy (EIS) was measured with a Z263A impedance analyzer (Princeton Applied 125 Research, USA). The ac amplitude and the applied voltage were 10 mV and set at open-circuit voltage of the cells, respectively. For the I-V curves measurements, the dye-sensitized TiO₂ films were illuminated through the conductive glass using a 500-W high pressure Xe lamp as the simulating sunlight.

RESULTS AND DISCUSSION

Photoelectric performance of TiO₂, **N-TiO**₂ and **S-TiO**₂ **electrodes:** Table-1 shows the averaged data extracted from I-V curve measurements on dye-sensitized nanostructured TiO₂ electrodes. As is shown in the figure, V_{oc} , J_{sc} , fill factor and conversion efficiency of the undoped TiO₂ film is 652 mV, 149 μ A/cm², 0.39 and 0.094 %, respectively. When the electrolyte is doped the (NH₄)₂SO₄ or thiourea, the photoelectric performance is improved. The V_{oc} of the N-TiO₂ and S-TiO₂ electrodes increases to 701 and 697 mV and J_{sc} increases to 165 and 156 μ A/cm², while photoelectric conversion efficiency increases to 0.121 and 0.109 %, respectively. The highest conversion efficiency has been achieved for the cell, employing the N-TiO₂ film.

TABLE-1						
PHOTOELECTRIC PARAMETERS OF TiO ₂ ,						
N-TiO ₂ AND S-TiO ₂ ELECTRODES						
Sample	$V_{oc} (mV)$	J_{sc} ($\mu A/cm^2$)	FF	η (%)		
TiO ₂	652	149	0.39	0.095		
N-TiO ₂	701	165	0.42	0.121		
S-TiO ₂	697	156	0.40	0.109		

Analysis of SEM and XRD results: The surface images are shown in Fig. 1. It can be seen that the surface of microplasma oxidation films are mesoporous. The pore density and size increase when the TiO₂ film is doped in N and S ions. These changes could improve the photo-electricity properties of the films because more mesopores can absorb more OH⁻ to absorb the *cis*-RuL₂(SCN)₂·2H₂O, which can increase the utilization ratio of visible light. So, the photoelectric performance of the dye sensitized solar cells assembled by N-TiO₂ and S-TiO₂ is improved.

Table-2 shows the effect of the N- and S-doping on the lattice parameter of the TiO₂. It can be seen (Table-2) that the cell volume increases after N and S ions doped into the TiO₂. Moreover, the cell volume of the N-TiO₂ is larger than that of the S-TiO₂. The above aberrance and expand of the crystal lattice usually produce strain energy. In order to equalize this crystal lattice stress, part of the oxygen atoms on the surface of TiO₂ is easy to escape from the crystal lattice and capture the holes. As a result, the recombination rate of e^-/h^+ is reduced. So, the photoelectric property is enhanced.

Fig. 1. Effect of dopants on morphology of thin TiO₂ film: (a) TiO₂; (b) N-TiO₂; (c) S-TiO₂

TABLE-2					
LATTICE PARAMETER OF N-TiO ₂ AND S-TiO ₂					
Sample	TiO ₂	N-TiO ₂	S-TiO ₂		
A = b (nm)	0.4600	0.4607	0.4613		
c (nm)	0.2963	0.2963	0.2966		
Crystal cell volume (nm ³)	0.0627	0.0629	0.0631		

Analysis of EIS results: The photoelectric performance is discussed by EIS (Fig. 2). Every EIS shows only one (slightly flattened) semicircle. But, in general, the EIS spectrum of the dye-sensitized solar cell containing liquid electrolyte shows three semicircles in the measured frequency range of 0.01 Hz to 100 kHz¹⁴. The reason is that these arcs were so large that

Fig. 2. Impedance spectra of cells assembled N-doped and S-doped TiO₂ electrodes

the other components were not observed. It can also be concluded that the frequency range and the size of the semicircle is associated with kinetic processes at the TiO₂ electrode of the solar cell. Thus, this means that the charge-transfer resistances at the TiO₂ electrodes mainly affect the performance for these samples. The impedance of the N-TiO₂ electrode is the smallest, which results in the superior photocurrent and photovoltage. Also, high interfacial charge-transfer resistance resulting from large semicircle is observed for the dye-sensitized solar cells containing undoped TiO₂ electrode. The above analysis can be supported well by the results of the photoelectric parameter of the TiO₂ electrodes.

Conclusion

N- and S- doping expands the crystal lattice and reduce the surface resistance of TiO₂ which leads to the performance

Asian J. Chem.

of solar cell based on N-TiO₂ and S-TiO₂ is improved. Furthermore, the photoelectric efficiency of N-TiO₂ is higher than that of the S-TiO₂. In addition, microplasm oxidation shortens the preparation time greatly. These advantages of microplasm oxidation are of great importance to fabricate a large area dye sensitized solar cells in industry.

ACKNOWLEDGEMENTS

This work was financially supported by Educational Commission of Heilongjiang Province of China (No. 11551008).

REFERENCES

- 1. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar and C.A. Grimes, Sol. Energ. Mat. Sol. C, 90, 2011 (2006).
- 2. H. Lindström, A. Holmberg, E. Magnusson, S.-E. Linquist, L. Malmqvist and A. Hagfeldt, Nano. Lett., 1, 97 (2001).
- 3. M. Guo, P. Diao, X.D. Wang and S.M. Cai, J. Solid State Chem., 178, 3210 (2005).
- 4. T.N. Murakami, Y. Kijitori, N. Kawashima and T. Miyasaka, J. Photochem. Photobiol. A, 164, 187 (2004).
- J.G. Doh, J.S. Hong, R. Vittal, M.G. Kang, N.G. Park and K.J. Kim, 5. Chem. Mater., 16, 493 (2004).
- U. Beck, R. Lange and H.G. Neumann, Biomol. Eng., 24, 47 (2007). 6.
- Z.Y. Liu, K. Pan, M. Liu, M.J. Wang, Q. Lü, J.H. Li, Y.B. Bai and T.J. 7. Li, Electrochim. Acta, 50, 2583 (2005). 8.
- K.M.P. Bandaranayake, M.K.I. Senevirathna, P.M.G.M.P. Weligamuwa and K. Tennakone, Coord. Chem. Rev., 248, 1277 (2004).
- 9. A. Kitiyanan and S. Yoshikawa, Mater. Lett., 59, 4038 (2005).
- 10. E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz and J.R. Durrant, J. Am. Chem. Soc., 125, 475 (2003).
- 11. K.H. Ko, Y.C. Lee and Y.J. Jung, J. Colloid Interf. Sci., 283, 482 (2005).
- 12. Y.Q. Wang, H.M. Cheng, L. Zhang, Y.Z. Hao, J.M. Ma, B. Xu and W.H. Li, J. Mol. Catal. A, 151, 205 (2000).
- 13. R. Asahi, T. Morikawa and T. Ohwaki, Science, 293, 269 (2001).
- D. Kuang, P. Walter, F. Nüesch, S. Kim, J. Ko, P. Comte, S.M. 14. Zakeeruddin, M.K. Zazeeruddin and M. Grätzel, Langmuir, 23, 10906 (2007).