
INTRODUCTION

The type of wastewater treatment technique used for water

quality control is becoming more important due to rising

environmental issues. At present, there are many traditional

and novel technologies applied for wastewater treatment and

their construction and operation/maintenance costs may differ

in a wide range. With features like acceptable efficiency, easy

operation, ecologically friendliness and low cost, constructed

wetlands, today, are considered as one of the sustainable

treatment alternatives that can be employed for non-point

source pollution control1,2, the treatment of agricultural waste3-

5, domestic wastewater6-8, industrial waste9,10, urban run-off/

stormwater11,12 and treatment plant effluents13,14. These systems

are furthermore applied to strip nutrients of eutrophied surface

waters as well as domestic wastewater15-17. It must, however,

be stressed that wetlands for wastewater treatment have several

other functions such as water quality improvement, they can

also function as a nature development area, a recreational area,

a hydrological buffer or a reservoir18.

The models applied to predict the system performance of

constructed treatment wetlands can be classified into two; (i)

simple transport and first-order decay models, (ii) mechanistic

or process based models19. Among these models is artificial

neural network model (ANN), which is a technique inspired

Modeling Wastewater Treatment Performance of a Vegetated

Constructed Wetland Using Neural Network Approach

C.B. ERSU

Department of Environmental Engineering, Cukurova University, 01330 Balcali, Adana, Turkey

Corresponding author: Tel: +90 322 3386779; E-mail: cbersu@yahoo.com

(Received: 29 November 2010; Accepted: 12 September 2011) AJC-10388

A multi-layer perceptron neural network model with Levenberg-Marquardt algorithm (MLP-LM) was developed based on the performance

and operation data of a research worker named Marahatta on a full-scale vegetated submerged wetland system (VSB) operated for a 5 year

period. Influent chemical oxygen demand (CODinf), volatile suspended solids (VSSinf), total solids (TSinf) and temperature (T) were determined

as the inputs of the model, whereas the output variables were one of the following; (i) effluent chemical oxygen demand (CODeff), (ii) total

solids (TSeff) and (iii) volatile suspended solids (VSSeff). Multi-linear regression (MLR) and multi non-linear regression (MNLR) techniques

were also used for data analysis to compare the prediction capability. Four criteria used for a statistical comparison were the following:

mean square error (MSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2). The

results showed that MLP-LM approach predicted the performance of the constructed wetland system than the MLR and MNLR techniques.

Key Words: Artificial neural network, Submerged bed system, Constructed wetland, Modeling, Treatment performance, Wastewater

treatment.

by biological neuron processing. The ANN models have a wide

application field on several scientific disciplines for time

series forecasting, process control and pattern recognition.

Their primary advantage over traditional methods is that they

do not require the complex nature of the underlying process20.

Once reliable models for constructed wetlands are useful, they

can also be used for evaluating and improving existing design

criteria21. Artificial neural networks (ANNs) have already been

used to simulate the effect of climate change on the discharge

and the exportation of dissolved organic carbon and nitrogen

from river basins22, to simulate and forecast residual chlorine

concentrations within urban water systems23, to forecast

salinity in water resources24, to determine the relationship

between sewage odour and BOD25 and to determine the leachate

amount from municipal solid waste landfill26. Akratos et al.17,27

suggested that artificial neural networks were able to predict

biochemical oxygen demand (BOD) and total nitrogen (TN)

removal in horizontal subsurface flow constructed wetlands.

Very few studies have been conducted on ANN-based prediction

of organic matter concentration in the effluents of constructed

wetlands17,27-29.

This study aimed at investigating the process performance

of vegetated submerged wetland (VSB) systems based on the

observation full-scale applications of wetland systems. One

may perform basic statistics, numerical differentiation and
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integration, evaluate all types of functions solve dynamical

systems and partial differential equations, estimate parameters

and so forth. Whereas, in current study, a multi-layer perceptron

neural network model with a Levenberg-Marquardt algorithm

(MLP-LM) was developed based on the performance and

operation data of Marahatta1 on a full-scale vegetated submerged

wetland system (VSB) operated for a 5 year period. The aim

of this model was to guess the future problems, minimize the

pollutions in future, ecosystem rehabilitation, without treatment

plant's laboratory, guess the performance, minimize the cost,

minimize the margin of error, minimize the manpower, compa-

ring with reactor performance and model performance, to

understand relationship between literature parameters.

EXPERIMENTAL

Multi-linear regression (MLR): MLR method constructs

a linear relationship between a dependent variable and one or

more independent variables. In this method, the dependent

variable, y, is regarded as a linear function of p number of

independent variables, x1, x2,..., xp. In this case, the linear

equation can be formed as:

ε+β++β+β+β=
pp22110

x.........xxy (1)

where the residual, ε, is a normally distributed random variable

with a mean of zero. The regression coefficients, β0, β1, β2,…,

βp, are computed for the lowest sum of squares of differences

between the predicted and observed values30.

Multi-nonlinear regression (MNLR): Similar to linear

regression, non-linear regression also relates a dependent variable

to a number of independent variables. Unlike linear regression,

the prediction equation for nonlinear regression depends

nonlinearly on one or more unknown parameters. Linear

regression is often used for forming a purely empirical model,

whereas non-linear regression usually arises when there are

physical reasons for believing that the relationship between

the response and the predictor variables follow a particular

functional form. A general mathematical function (model) of

a non-linear regression is described below:

y = f (x1, x2, …, xn, a0, a1, a2, …, am) (2)

where a0, a1, …, am are regression parameters to a set of N

tabulated values of x1, x2, …, xn (independent variables) versus

y (dependent variable). Note that the number of data points

must be greater than m + 1 (thus N ≥ m + 1)31.

Multi-layer perceptron (MLP) neural network: MLP

neural network is generally characterized by the presence of

one or more hidden layers, the structure of which is shown in

Fig. 1. Computation nodes for a MLP network are called

"hidden neurons of hidden units". Hidden neurons function to

intervene between the external input and the network output

in some useful manner. The network can be developed to

extract higher order statistics via adding one or more hidden

layers. In a rather loose sense, the network acquires a global

perspective despite its local connectivity due to the extra set

of synaptic connections and the extra dimension of artificial

neural network (ANN) interconnections. The detailed theore-

tical information about MLP can be found in Haykin32. Here,

the MLP is trained using Levenberg-Marquardt technique

(LM) due to its more powerful and faster feature compared to

conventional gradient descent technique33-35. Although MLP

can employ more than one hidden layer, one-hidden-layer MLP

is used in this study since theoretical works have shown that a

single hidden layer is sufficient for MLP to approximate any

complex nonlinear function36,37. Adaptive learning rates are

used to speed up training throughout all MLP simulations and

the numbers of hidden layer neurons are determined using

trial-and-error method. The sigmoid and linear functions are

used for the activation functions of the hidden and output

nodes, respectively.

Fig. 1. MLP network model

RESULTS AND DISCUSSION

The data set obtained from the work of Marahatta1 was

randomly divided into two independent parts. To overcome

some extrapolation difficulties in prediction of the extreme

values, the minimum and maximum values of the parameters

used in the modeling were set in the training data. For training

phase, 46 data (ca. 70 %) were randomly selected and the

remaining 19 data (ca. 30%) were selected for testing phase.

A MATLAB code including ANN toolbox was written for the

application of the MLP-LM algorithm.

The four input parameters of the MLP-LM model chosen

for the present problem included CODinf, TSinf, VSSinf and

temperature (T) and the three output parameters were CODeff,

TSeff and VSSeff. Before applying the MLP-LM to the observed

data, the training input and output values were normalized

using the equation:

b
xx

xx
a

minmax

mini +
−

−
(3)

where xmin and xmax denote the minimum and maximum of the

input and out parameters that are given in Table-1. There are

no fixed rules as to which standardization approach should be

used for the scaling factors "a" and "b" in particular circum-

stances, different values can be assigned for these factors38.

The values of a and b were taken as 0.6 and 0.2, respectively.

TABLE-1 
MINIMUM AND MAXIMUM VALUES OF  

INPUT AND OUTPUT PARAMETERS 

Training data set Testing data set Model 
parameters Min Max Min Max 

CODinf 147.0 551.7 190.0 489.3 

TSinf 360.3 1211.3 517.3 1141.3 

VSSinf 14.0 87.5 22.7 87.5 

T 4.0 27.1 7.1 24.9 

CODeff 5.5 47.0 6.3 45.0 

TSeff 210.0 796.7 479.0 663.0 

VSSeff 75.5 300.0 130.5 272.5 
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In current work, the MLR and MNLR techniques were

applied to the training dataset. Using MLR and MNLR tech-

niques, the following formulae were found to offer the best

statistical measures for fit of training dataset, respectively:

CODeff = 17.8 + 0.284 CODinf + 0.140 VSSinf +

0.077 TSinf + 0.263 T (4)

TSeff = 280.04 - 0.697 CODinf + 5.926 VSSinf +

0.440 TSinf - 3.69 T (5)

VSSeff = 8.36 - 0.0150 CODinf + 0.380 VSSinf -

0.0113 TSinf + 0.233T (6)

CODeff = 0.989* CODinf 
0.672 * VSSinf

 0.150 *

TSinf
 0.114 * T-0.0098 (7)

TSeff = 18.178* CODinf
 -0.427 * VSSinf

 0.450 *

TSinf
 0.687 * T-0.113 (8)

VSSeff = 119.47* CODinf
 -0.356 * VSSinf

 0.920 *

TSinf
 -0.601 * T0.167 (9)

Eqns. 4-6 were developed using the MLR technique, while

eqns. 7-9 were produced by the MNLR technique. The

computed results predicted by the MLR, MNLR and MLP-

LM models from the present study were compared with

measurements with respect to the mean square error (MSE),

mean absolute error (MAE), mean absolute relative error

(MARE) and determination coefficient (R2) statistics. MSE,

MAE and MARE statistics are defined as:

( )∑
=

−=
N

1i

2p

i

m

i
EE

N

1
MSE (10)

∑
=

−=
N

1i

p

i

m

i
EE

N

1
MAE (11)

100
E
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MARE

N

1i

m

i

p

i

m

i ×
−

= ∑
=

(12)

In eqns. 10-12, Ei
m and Ei

p denote the measured and

predicted output parameters, respectively and N is the total

number of data. After trying various network structures and

iteration numbers, the most appropriate results were obtained

from the ANN (4,5,1), ANN (4,3,1) and ANN (4,6,1) models

for estimating CODeff, TSeff and VSSeff, respectively.

For the quantitative evaluation of the comparisons of the

predicted CODeff, TSeff and VSSeff values using the MLR,

MNLR and MLP-LM models with measurements, the results

for MSE, MAE, MARE and R2 statistics are given in Table-2.

The results in this table show that, in terms of MSE, MAE,

MARE and R2, the MLP-LM performs much better than those

of the MLR and MNLR techniques.

Figs. 2 and 3 show the comparisons of the measured and

predicted CODeff, TSeff and VSSeff values obtained using the

MLP-LM model for the training and testing phases, respec-

tively. It is seen in these figures that the accurate estimations
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Fig. 2. Model prediction and comparison between observed and predicted effluent VSS, TS and COD during training phase
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for CODeff, TSeff and VSSeff values are achieved by the MLP-

LM model.

Conclusion

This study indicates the ability of an artificial neural

network approach called as MLP-LM to model the relation-

ships between influent and effluent values of chemical oxygen

demand (COD), volatile suspended solids (VSS) and total

solids (TS) based on the measured data obtained from the

literature. The results showed that the MLP-LM performs better

than the MLR and MNLR techniques. The study only used

data from the work of Marahatta1 and further work using more

data may be required to strengthen these conclusions.

TABLE-2 
STATISTICS OF MLR, MNLR AND MLP-LM MODELS FOR BOTH TRAINING AND TESTING PHASES 

Training Testing 
Parameter Criteria 

MLR MNLR MLP-LM MLR MNLR MLP-LM 

MSE 1564.83 1658.16 493.62 1628.92 1482.16 488.11 

MAE 30.94 31.63 16.66 34.42 32.41 18.07 

MARE 205.70 18.08 10.30 194.80 14.85 8.97 
CODeff 

R2 0.479 0.467 0.837 0.234 0.336 0.760 

MSE 5106.51 6724.49 3138.71 9992.91 11183.95 1447.24 

MAE 55.80 69.50 45.54 89.60 95.52 31.79 

MARE 203.97 16.01 11.29 191.97 17.68 5.69 
TSeff 

R2 0.840 0.796 0.958 0.617 0.614 0.715 

MSE 24.11 25.73 0.74 28.86 33.87 2.94 

MAE 3.21 2.91 0.69 3.38 3.55 1.32 

MARE 207.35 20.63 6.09 219.06 26.92 11.10 
VSSeff 

R2 0.631 0.661 0.989 0.614 0.606 0.960 
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Fig. 3. Model prediction and comparison between observed and predicted effluent VSS, TS and COD during testing phase
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