

Synthesis of Imidazolidines, Saccharins and Chromone Bearing Imidazolidine Ring

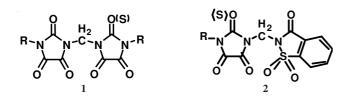
YONG-GYUN LEE¹, JIN-HWAN YOON¹, JONG-SIK KIM¹, JU-HYUN SONG¹, YUN-YOUNG KIM¹, DAI-IL JUNG^{1,*} and JUNG-TAI HAHN²

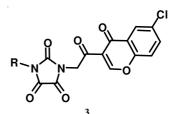
¹Department of Chemistry, Dong-A University, Saha-Gu, Busan 604-714, South Korea ²Department of Beauty Care, Youngdong University, South Korea

*Corresponding author: Fax: +82 51 2007249; Tel: +82 51 2007259; E-mail: dijung@dau.ac.kr

(Received: 24 November 2010;

Accepted: 12 September 2011)

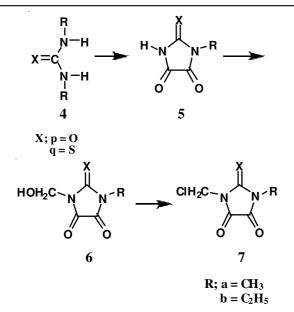

AJC-10385


As a part of a research program related to the synthetic study of pharmacologically and agrochemically interesting imidazolidines, we synthesized imidazolidines **8**, **9**, **10**, saccharins **12**, **13** and chromone **17** bearing imidazolidine-2,4,5-trione or 2-thioxoimodazolidine-4,5-dione rings.

Key Words: Imidazolidines, Saccharin, Chromone, Herbicide, Fungicide.

INTRODUCTION

There are several examples of naturally occurring and synthetic imidazolidine-2,4-dione (hydantoin) derivatives exhibiting various biological activities, such as antitumor¹, antiarrhythmic², anticonvulsant and herbicidal activity³, inhibition of glycogen phosphorylase⁴ and aldose reductase⁵ and neurotransmission⁶ effects. Numerous imidazolidine-2,4,5-triones are known for their herbicide, plant growth regulator and in a minor part, fungicide properties⁷. Polymers containing imidazolidine 2,4,5-trione(parabanic) rings are known as highly thermally stable polymers with improved chemical resistance in organic solvents⁸⁻¹³. Recently, many marine imidazol alkaloids have been isolated from sponges and their antitumor and antibacterial activities have also been found^{14,15}. As a part of a research program related to the synthetic study of pharmacologically and agrochemically interesting imidazolidines¹⁶, we chose to associate imidazolidine-2,4,5trione 1 bearing imidazolidine-2,4,5-trione or 2-thioxo imidazolidine-4,5-dione rings as an active component for the desired property. Also in order to obtain new agrochemicals, we report the synthesis of the new saccharin 2 and chromone 3 derivatives containing 2,4,5-imidazolidinetrione group or 2-thioxo imidazolidine-4,5-dione.



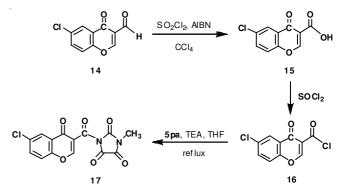
The basic-catalyzed condensation between imidazolidine-2,4,5-triones **5** and paraformaldehyde (**Scheme-I**) in aqueous solution allowed us a mixture of the expected N-hydroxymethyl derivatives **6** and **5**. However, the instability of **6** made its isolation very difficult.

The use of column chromatography as a method of purification failed, whatever the eluent or support (silica gel, alumina) used, because the R_f value is the same for the two compounds. For this reaction, the next chlorination step, using a large excess of thionyl chloride, was realized starting directly from a mixture of **6** and **5**. The chlorinated precursors **7** were easily isolated by column chromatography (silica gel, CH₂Cl₂) and the product has a much higher R_f value than the starting material. 1-Chloromethyl-2-thioxo-imidazolidine-2,4-diones **7q** was obtained by the same methods as the reactions of imidazolidine-2,4,5-triones **5q** (Table-1).

1-Ethyl-3-((3-methyl-2,4,5-trioxoimidazolidin-1-yl)methyl-imidazolidine-2,4,5-trione **8**, 1-ethyl-3-((3-ethyl-4,5dioxo-2-thioxoimidazolidin-1-yl)methyl)imidazolidine-2,4,5trione **9** and 3,3'-methylene *bis*(1-ethyl-2-thioxoimidazolidine-4,5-dione) **10** were obtained in good yields as shown in Table-2. The typical experimental procedure for **8** is as follows: To a solution of 1-chloromethyl-3-methyl-imidazolidine-2,4,5trione **7pa** (2.0 g, 1.13×10^{-2} mol) in dry THF (15 mL) under

Reagents and reaction conditions; (I) benzene, rt, COClClCO, (II) (CH₂O)_n, K₂CO₃, (III) SOCl₂

Scheme-I: Synthesis of 1-chloromethyl-imidazolidine-2,4,5-triones 7p and 1-chloromethyl-2-thioxo-imidazolidine-4,5-diones 7q by using N-substituted ureas 4


TABLE-1 PHYSICAL DATA FROM 2,4,5-IMIDAZOLIDINETRIONES 5 TO 1-CHLOROMETHYL-3-PHENYL-2-THIOXO- IMIDAZOLIDINE-4,5-DIONE 7							
Entry	Reactant	Product	Yield* (%)	m.p. (°C)			
1	4pa	5pa	92	146-147			
2	4pb	5pb	85	121-123			
3	5pa	7pa	62	149-150			
4	5pb	7pb	81	83-84			
5	4qa	5qa	60	104-105			
6	4qb	5qb	70	77-79			
7	5qa	7qa	45	97-100			
8	5qb	7qb	50	89-90			
*Isolated vie	elds						

nitrogen at room temperature was added solution of 1-ethylimidazolidine-2,4,5-trione **5pb** (1.47 g, 1.04×10^{-2} mol) and triethylamine (0.4 mL) in dry THF (15 mL). The reaction mixture was stirred at room temperature for 0.5 h. After 0.5 h, the reaction mixture was refluxed at 60-65 °C for 7 h. The reaction mixture was cooled again to room temperature and THF (75 mL) was added. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel eluted with only CH₂Cl₂, to provide the 8 as a white crystalline solid (1.6 g, 62 %). Yields of the product 8-10 synthesized by the reaction of 7pa, 7qb with 5pb or 5qb like the previous reaction are show in Table-2. In the development of new agrochemical, we chose to associate benzisothiazole 2 or chromone group 3 as a new structure in which each part would serve as an active component for the desired property. The typical experimental procedure for 1-ethyl-2thioxo-3-(1,1,3-trioxo-1,3-dihydro-16-benzo[d]isothiazol-2ylmethyl)-imidazolidine-4,5-imidazolidine-4,5-dione 12 is as follows: To a solution of 1-ethyl-2-thioxo-imidazole-4,5-dione

3qb (1 g, 4.8 mmol) in dry THF (10 mL) under nitrogen at room temperature was added solution of saccharin 11 (1.5 g, 8.2 mmol) and triethylamine (1.1 mL) in dry THF (10 mL). The reaction mixture was stirred at room temperature for 0.5 h. After 0.5 h, the mixture was refluxed at 55-60 °C for 5 h. The reaction mixture was cooled again to room temperature and THF (30 mL) was added. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel eluted with only CH₂Cl₂, to provide the 12 as a yellow crystalline solid (1.68 g, 49 %).

Compound 2pb was synthesized in good yield (54 %) as a yellow crystalline solid.

Chromone (or 1,4-benzopyrone) is a derivative of benzopyran with a substituted ketogroup on the pyran ring. The new imidazolidine with a chromone group was synthesized by three reaction steps from 6-chloro-3-carboxylic chromone 14.

Compound 17 was synthesized by the reaction of 5pa and 16 formed through oxidation and chlorination steps in good yield (55 %). The experimental procedure for compound 17 is as follows: To a solution of N-methyl-2,4,5-imidazolidinetrione **5pa** (0.3 g, 2.0×10^{-4} mol) in dry THF (10 mL) under nitrogen atmosphere at room temperature the solution of 6-chloro-3-carbochloric chromone $16(0.5 \text{ g}, 2.0 \times 10^{-4} \text{ mol})$ and TEA (1.3 mL) in dry THF (5 mL) were added. The reaction mixture was stirred at room temperature for 0.5 h. After 0.5 h, the reaction mixture was refluxed at 55-60 °C for 3 h. The reaction mixture was cooled again to room temperature and THF (50 mL) was added. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel eluted with only CH₂Cl₂, to provide compound 17 as a yellow crystalline solid (0.18 g, 55 %). Biological tests for the phytocides, herbicides and insecticides of the new imidazolidines 8, 9, 10, 12, 13, 15, 16, 17 are in progress.

1-Ethyl-3-[(3-methyl-2,4,5-trioxoimidazolidin-1yl)methyl]imidazolidine-2,4,5-trione (8): Yield 70 %, m.p. 126-129 0°C; ¹H NMR (200 MHz, DMSO) δ 5.21 (s, 2H), 3.51 (d, *J* = 7.08 Hz, 2H), 2.92 (s, 3H), 1.12 (t, *J* = 7.02 Hz, 3H); ¹³C NMR (50 MHz, DMSO) δ 156.8, 156.1, 152.5, 40.4, 33.7, 12.9; GC/MS m/z 282 (M⁺).

1-Ethyl-3-[(3-ethyl-4,5-dioxo-2-thioxoimidazolidin-1yl)methyl]imidazolidine-2,4,5-trione (9): Yield 72 %, m.p.

TABLE-2 PHYSICAL DATA OF SYNTHESIZED COMPOUNDS (8, 9, 10, 12, 13, 15, 16, 17)								
Entry	Reactant 1	Reactant 2	Product	Yield* (%)	m.p. (°C)			
1	7pa	5pb	$\begin{array}{c} \begin{array}{c} 0 \\ H_3C_N \\ \end{array} \\ 0 \\ 0 \\ \end{array} \\ 0 \\ \end{array} \\ \begin{array}{c} H_2 \\ C_N \\ 0 \\ 0 \\ \end{array} \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ N \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ N \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	70	126-129			
2	7рь	5qb	$\begin{array}{c} 0 \\ C_2H_5 \sim N \\ 0 \\ 0 \\ 0 \\ 0 \\ 9 \end{array} \xrightarrow{H_2} N \\ N $	72	162-163			
3	7qb	5qb	$\begin{array}{c} \begin{array}{c} & & \\ C_2H_5 \sim N \\ & & \\$	74	149-151			
4	7рb	5qb	$C_2H_5 \sim N \xrightarrow{N} N \xrightarrow{-C \sim N} \xrightarrow{-K_2} 0 -K_2$	54	182-183			
5	7qb	5qb	$\begin{array}{c} C_2H_5 \sim N \\ 0 \\ 0 \\ 0 \\ 13 \end{array} \xrightarrow{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	49	157-158			
6	14	SO ₂ Cl ₂ , AIBN		76	225-226			
7	15	SOCl ₂		86	158-159			
8 *Yields are isolated	16	5pa	CI CI CI CI CI CI CI CI	55	220-221			

*Yields are isolated yields.

162-163 °C; ¹H NMR (200 MHz, DMSO) δ 5.53 (s, 2H), 3.80 (d, J = 7.01 Hz, 2H), 3.51 (d, J = 6.93 Hz, 2H), 1.11 (t, J = 7.10 Hz, 6H); ¹³C NMR (50 MHz, DMSO) δ 180.1, 156.7, 156.0, 154.9, 154.7, 152.4, 43.6, 36.6, 33.8, 12.9, 12.5; GC/ MS m/z 312 (M⁺).

3,3'-Methylenebis(1-ethyl-2-thioxoimidazolidine-4,5dione) (10): Yield 74 %, m.p. 149-151 °C; ¹H NMR (200 MHz, DMSO) δ 5.82 (s, 2H), 3.81 (d, *J* = 7.09 Hz, 4H), 1.12 (t, *J* = 6.95 Hz, 6H); ¹³C NMR (50 MHz, DMSO) δ 180.2, 154.8, 47.0, 36.7, 12.4; GC/MS m/z 328 (M⁺).

2-[3-Ethyl-2,4,5-imidazolidinetrionyl]methyl]-1,2benzisothiazol-3-one-1,1-dioxide (12): R_f : 0.4 (TLC eluent; only CH₂Cl₂) yield: 54 %, m.p. 182-183 °C IR (KBr, v_{max} , cm⁻¹): 2981, 2885, 1746, 1425, 1340, 1293, 1251, 1180, 1115 mass, m/z: 337 ($[M^+]$, (2), 273 (8), 223 (4), 196 (100), 174 (15), 169 (14), 132 (20) ¹H NMR (200 MHz, acetone-*d*₆): δ 1.18-1.28 (t, 3H, CH₃), 3.64-3.75 (q, 2H, CH₂), 5.70 (s, 2H, N-CH₂-N), 8.02-8.22 (m, 4H, phenyl).

 $\begin{array}{l} \textbf{2-[(3-ethyl-2-thio-4,5-imidazolidinedionyl)methyl]-1,2-benzisothiazol-3-one-1,1-dioxide (13): R_f: 0.3 (TLC eluent; 100 % CH_2Cl_2) yield: 49 %, m.p. 156.5-159 °C, IR (KBr, <math>v_{max}$, cm⁻¹): 1780, 1740, 1720, 1390, 1330, 1280, 1240, 1175 mass, m/z: 353 ([M⁺]) ¹H NMR (200 MHz, acetone-*d*₆): δ 1.17 (t, 3H, -CH₂), 3.99-4.06 (q, 2H, -CH₂), 6.04 (s, 2H, N-CH₂-N), 8.05-8.20 (m, 4H, phenyl).

6-Chloro-3-carboxylic chromone (15): R_f : 0.5 (TLC eluent; *n*-hexane:ethylacetate = 2:1 v/v) yield: 76 %, m.p.: 225-227 °C, ¹H NMR (200 MHz, CDCl₃): δ 7.4-8.3 (m, 4H), 9.0 (s, 1H), 13.3 (s, 1H).

6-Chloro-3-carbochloric chromone (16): R_{f} : 0.2 (TLC eluent; *n*-hexane:ethylactate = 5:1 v/v) yield: 86.3 %, m.p.: 158-159 °C, ¹H NMR (200 MHz, CDCl₃): δ 7.4-8.5 (m, 4H), 8.9 (s, 1H) 16.

1-(6-Chloro-4-oxo-4*H***-chromone-3-carbonyl)-3methyl-imidazoline-2,4,5-trione (17):** R_f: 0.45 (TLC eluent; *n*-hexane:ethylacetate = 1:1 v/v) yield: 55 %, m.p.: 220-225 °C, ¹H NMR (200 MHz, CDCl₃): δ 2.2 (s, 3H), 7.4-8.5 (m, 4H), 8.9 (s, 1H).

ACKNOWLEDGEMENTS

This work was supported by Dong-A University Research Fund (2010).

REFERENCES

- R.F. Struck, M.C. Kirk, L.S. Rice and W.J. Suling, J. Med. Chem., 29, 1319 (1986).
- M. Matsukura, Y. Daiku, K. Ueda, S. Tanaka, T. Igarashi and N. Minami, *Chem. Pharm. Bull.*, 40, 1823 (1992).
- 3. H. Sano and S. Sugai, Tetrahedron, 51, 4635 (1995).

- T.W. Brandstetter, C. de la Fuente, Y.-H. Kim, L.N. Johnson, S. Crook, P.M. de Q. Lilley, D.J. Watkin K.E. Tsitsanou, S.E. Zographos, E.D. Chrysina, N.G. Oikonomakos and G.W. Fleet, *Tetrahedron*, **52**, 10721 (1996).
- R. Unno T. Yamaguchi, T. Usui, T. Kakigami, M. Fukushima, M. Kuhinaru, B. Yutaka and K. Masayasu, *Chem. Pharm. Bull.*, 42, 1474 (1994).
- J.T. Baker and R.J. Wells, In eds.: J.L. Deal and E. Rcinhard, Natural Products as Medicinal Reagents, Hippokrates Verlag, Stuttgart, p. 299 (1981).
- 7. S.K. Davidsen, G.W. Philips and S.F. Martin, Org. Synth., 65, 119 (1987).
- G. Caraculacu, E. Scortanu and A.A. Caraculacu, J. Polym. Sci. Polym. Lett. Ed., 21, 277 (1983).
- 9. E. Scortanu, G. Caraculacu and A.A. Caraculacu, *Iran. Polym. J.*, 7, 243 (1998).
- G. Caraculacu, C. Gaina, V. Gaina and A.A. Caraculacu, *Eur. Polym. J.*, 29, 1143 (1993).
- G. Caraculacu, C. Gaina, A.A. Caraculacu and G. Stoica, *Eur. Polym. J.*, 31, 987 (1995).
- E. Scortanu, I. Nicolaescu, G. Caraculacu I. Diaconu and A.A. Caraculacu, *Eur. Polym. J.*, 34, 1265 (1998).
- E. Scortanu, G. Caraculacu and A.A. Caraculacu, *Rev. Roum. Chim.*, 43, 875 (1998).
- 14. J.R. Lewis, Nat. Prod. Rep., 9, 81 (1992).
- 15. D.J. Faulkner, Nat. Prod. Rep., 9, 323 (1992).
- D.I. Jung, Y.Y. Kim, B.G. Yoo, Y.G. Lee and S.K. Choi, *J. Korean Chem. Soc.*, 43, 491 (1999).