Asian Journal of Chemistry; Vol. 23, No. 2 (2011), 923-924

ASIAN JOURNAL OF CHEMISTRY

www.asianjournalofchemistry.co.in

NOTE

Antimicrobial Activity of Terminalia sericeae Burch. exDC.

D. RAMA DEVI, P. LAKSHMI and S. GANAPATY

Pharmacognosy and Phytochemistry Division, College of Pharmaceutical Sciences, Andhra University, Visakhapatnam-530 003, India

*Corresponding author: Fax: +91 891 2755547; 2755324; E-mail: ganapatyseru@yahoo.co.in; ganapatyseru@gmail.com

(Received: 11 February 2010;

Accepted: 18 October 2010)

AJC-9199

The methanolic extract of the leaf and bark of *Terminalia sericeae* was tested for antimicrobial activity on *Staphylococcus aureus*, *Staphylococcus subtilis*, *Streptococcus mutans*, *Streptococcus anginosus*, *Lactobacillus acidophilus*, *Micrococcus luteus*, *Bacillus subtilis*, *Escherichia coli*, *Erwinia*, *Enterobacter aerogenus*, *Klebsiella pneumoniae*, *Proteus vulgaris*, *Pseudomonas aerginosa* and fungai are *Rhizopus*, *Aspergillus niger*, *Saccharomyces cerenesiae*, *Mucor*, *Rhizoctonia solanic*, *Candida albicans* and *Pencillium chrysogenum* at 100, 300 and 500 mg/kg dose levels. Both the extracts showed considerable activity. For testing, Agar cup plate method was used and chloramphenicol (10 mg/mL) and fluconazole (1 mg/mL) as standards.

Key Words: Terminalia sericeae, Antimicrobial activity.

The genus Terminalia is known as folklore medicine to treat bacterial infection¹⁻⁴, hyphocholesterolaemic, coronary artery disease and inflammatory conditions⁶. A good number of its species have also been examined for antibacterial and antifungal activities and found promising results. Hence, it is proposed to evaluate the antimicrobial activity of *Terminalia sericeae*, a combretaceae member.

The plant material, both the leaves and bark of *Terminalia sericeae* were collected from Tirupathi (Chittoor district), Andhra Pradesh, India and was authenticated by Prof. Madhavasetty, Department of Botany, Sri Padmavathi Mahila University, Tirupathi, A.P.

These [leaves, barks(1 kg each)] were air dried, coarsely powdered and extracted with methanol in soxhlet extraction apparatus and concentrated under vaccum to a small residue (leaf extract-15 g, bark extract-9 g).

The tested organisms Staphylococcus aureus, Staphylococcus subtilis, Streptococcus mutans, Streptococcus angionosus, Lactobacillus acidophilus, Micrococcus luteus, Bacillus subtilis, Escherichia coli, Erwinia, Enterobacter aerogenus, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeroginosa and Rhizopus, Aspergillus niger, Saccharomyces cereniesiae, Mucor, Rhizoctonia solanic, Candida albicans, Pencillium chrysogenum were freshly prepared from the Department of Microbiology, Andhra University, Visakhapatnam.

Preparation of cultures: All the bacteria mentioned above were incubated in Nutrient broth at 37 ± 0.1 °C for

24 h and fungi in potato dextrose broth at 25 ± 0.1 °C for 24 h. The bacteria and fungi were transferred into petri dishes in the amount of 0.01 mL into nutrient agar and potato dextrose agar and were homogenously distributed in the sterilized petridishes³. The petri dishes were left at 4 °C for 2 h and then the plates inoculated with bacteria were incubated at 37 \pm 0.1 °C for 24 h, plates inoculated with fungi were incubated at 25 ± 0.1 °C for 48 h³⁻⁶. This study was carried out in duplicate for each test strains and the average measurement were calculated.

The methanolic extract of *Terminalia seriaceae* leaf and bark was tested on 12 bacterial stains and 6 fungi using agar diffusion method. Antimicrobial effect was observed on all the tested organisms including fungi. *Pseudomonas aeroginosa, Bacillus subtilis, Staphylococcus aureus, Streptococcus mutans, Klebsiella pneumoniae, Erwinia* were found to be very sensitive to the tested extracts (Table-1).

Conclusion

The present results indicated that the leaf and bark extracts of *Terminalia sericeae* were found inhibitory activity on both bacteria and fungi. Hence, the folklore claim was substantiated by this study.

ACKNOWLEDGEMENTS

One of the authors (D. Ramadevi) in grateful to UGC, New Delhi for the award of JRF (NO.U2/RGNF/(SC/ST)/2008-2009.

924 Devi et al. Asian J. Chem.

TABLE-1
ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES OF Terminalia sericeae LEAF AND BARK EXTRACTS

	Diameter of inhibition zone (mm)									
Organisms	Terminalia sericea leaf methanolic extracts					Terminalia sericea bark methanolic extracts				
	100 (mg/mL)	300 (mg/mL)	500 (mg/mL)	Standards	Control	100 (mg/mL)	300 (mg/mL)	500 (mg/mL)	Standards	Control
				Ch P	Me				Ch P	Me
Bacillus subtilis	18	22	25	50	9	17	19	23	46	9
Streptococcus mutans	17	18	18	35	10	14	20	21	40	9
Micrococcus lutues	12	15	17	30	10	16	21	23	30	10
Lactobacillus acidophilus	12	16	18	30	10	14	19	21	40	10
Staphylococcus aureus	17	18	19	27	9	16	18	24	34	10
Streptococus anginosus	10	12	13	34	9	12	17	22	40	9
Erwinia	16	18	19	15	8	12	13	18	40	10
Enterobacter aerogens	16	22	-	25	10	15	16	21	40	9
Proteus vulgaris	13	17	19	29	9	13	19	21	30	10
Klebsiella pneumoniae	12	14	15	30	12	16	20	22	28	11
Pseudomonas aeroginosa	20	25	27	45	14	16	19	23	24	9
Escherichia coli	14	18	21	20	10	11	13	18	20	9
				Flu	Me				Flu	Me
Rhizoctonia solanic	12	13	14	17	12	12	16	23	28	9
Mucor	12	13	16	15	8	11	12	16	30	10
Candida albicans	11	12	15	18	8	12	17	23	26	10
Rhizopus	12	13	16	17	9	14	16	22	32	10
Aspargillus niger	11	12	14	15	11	10	13	15	26	10
Saccharomycescerenesiae	12	13	16	14	9	10	17	23	30	9

Ch P = chloramphenicol, Flu = fluconazole, Me = methanol, Con = control.

REFERENCES

- K. Bone, Clinical Application of Ayurvedic and Chinese Herbs, Warwick, Queensl, Australia, Phytotherapy press, pp. 131-133 (1996).
- L.D. Kapoor, Hand Book of Ayurvedic Medicinal Plants, Boca Raton, FL. CRC press, pp. 319-320 (1990).
- C.H. Collins, P.M. Lyneand and J.M. Grange, Microbiological Methods, Butterworths, London, edn. 6, p. 410 (1989).
- 4. S. Toroglu, J. Environ. Biol., 28, 551 (2007).
- L.J. Bradshaw, Laboratory of Microbiology, 4 baski, Saunders College Publishing, USA, p. 435 (1992).
- 6. M.J. Moshi and Z.H. Mbwambo, J. Ethanopharmacol., 97, 43 (2005).