
INTRODUCTION

Quantum confinement effects in semiconductor quantum
dots (QDs) were discovered more than two decades ago1 and
have attracted more attention during recent years due to their
properties of nanoscale quantum confinement2-4 and the conse-
quent potential for size-tunable nanodevices. They have great
promise for a variety of applications in optoelectronics such
as optically pumped lasers5, light emitting diode6, solar cell7,
biomedicine as chemical markers8 and in telecommunications9.
Being a compound semiconductor, ZnS has found many
applications in various fields. ZnS nanoparticles can be used
as thin film or in the form quantum dots. ZnS quantum dot is
of interest as a phosphor and electroluminescent material and
is a system in which electrical and structural properties are a
function of particle size10. In a semiconductor nanoparticle,
the size effects appear when the radius of the particle is compa-
rable to the Bohr radius of the exciton in the bulk material.
Quantum size effects play an important role for ZnS quantum
dots with a diameter in the 1-5 nm11,12. These ranges of size
cover the transition regime between the bulk and molecule of
ZnS. In these sizes reduced number of atoms in the cluster
and increased the ratio of number atoms on the surface to the
volume. The energy gap in such a situation widens and the
energy levels become approximately like molecular levels. The
small size of these particles will result in quantum confinement
of the photo-generated electron-hole pair, leading to a blue
shift in the absorption spectrum13,14. As a consequent, by
controlling the quantum particle size, we can control optical
and transparent properties.
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In this paper, the effective mass is calculated for ZnS
quantum dots and showed the effective mass changed with its
size. A new equation is also shown the variation effective mass
for various particle sizes of ZnS. This equation fit with experi-
mental results.

EXPERIMENTAL

Effective mass: There are many methods for study the
quantum size effects for nanoparticles15-17. Due to the impor-
tance of band gap in manufacturing optical devices we have
tried to find the band gap of ZnS quantum dots in different
sizes. The best and the fastest theoretical techniques calculating
band gap in quantum dots is the effective mass approximation
(EMA)1. The effective mass theory has become an essential
ingredient in several branches of modern physics like, nuclear
physics18, solid state physics, such as quantum dots, the
description of electronic properties of semiconductors19 and
quantum dots16, quantum liquids20, He clusters21 and metal
clusters22.

The Hamiltonian of quantum dots with used EMA is
written by23:
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The ∆E represents the difference between bands gap of
quantum dot and bulk structure. The first term in eqn. 2 is
kinetic energy due to quantum size effect and it can be thought
of as the infinite square well contribution to the band gap (µ is
effective mass and R is the size of quantum dots). The second
term takes into account coulomb interaction effects on the
electrons and holes. The numerical factor in this term origi-
nates from calculations of wave function overlap integrals. In
eqn. 2 one can see that the Coulomb term shifts ∆E to lower
energy as R-1, while the quantum localization terms shift ∆E
to higher energy as R-2 so the band gap will always increase
for small enough R. The ∆E calculation was performed for
ZnS using the following24:

Band gap of bulk = 3.84 eV,      µ = 0.24 me

where me is electron mass. The EMA results for ∆E are
compared with the experimental25 as show in Fig. 1. The results
show that there is a good agreement between experiment and
effective mass approximation for particle sizes grater than
2.5 Å. The large difference for sizes below 2.5 Å is due to the
use EM bulk value of ZnS. Therefore, it is necessary to use
the proper EM value to reduce this deference.
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Fig. 1. Continues line is effective mass approximation (EMA) result
(eqn. 2), the dot line is experimental result [Ref. 25] and the dash
line is DFT approximation (this work)

Computational method: The effective mass approximation
(EMA) method can not describe the band gap for small size.
Therefore, the DFT method was used to obtain the band gap
of quantum dots specifically for the ZnS nano particle. In the
DFT method, by solving the Kohn-Sham equation and finding
the eigenvalue and eigenstate one can find the band gap. For
defining the quantum dot system we have used a supper cell
surrounded by vacuum in three dimensions. To omit dangling
bands of system H-passivation method was used26.

The structure of ZnS at room temperature is cubic (zinc
blende) form, while wurtzite, the less dense hexagonal form,
is stable above 1020 °C at atmospheric pressure and metastable
as a macroscopic phase under ambient conditions. The relative
stability of these phases is modified in both synthetic and
natural ZnS nanoparticles27,28. Fig. 2 shows structure for ZnS
quantum dot that contained 5, 17, 41 and 83 atoms.

The ab initio software program espresso was used for calcu-
lations, which treats the multi-particle problem of electrons in
a period crystal by the density-functional theory (DFT) and
using the pseudo-potential method. We used norm conserving

 

Fig. 2. Geometry of the structure ZnS quantum dot which contain 5, 17,
41 and 83 atoms, respectively

pseudo-potential for nearly exact result respect to soft pseudo-
potential. The optimum energy cut off for this pseudo-potential
obtain about 100 Ry that is larger than the energy cut off for
soft pseudo-potential. This energy cut off increase time of
calculation but the result is better and near to experimental
data. We can used this software for ZnS quantum dots by
choosing a super cell. The optimum length of super cell can
be obtained by minimum energy for system. This optimum
length is obtained about 10.1 Bohr that is agreement with
experimental that is about 10.2 Bohr29. Also the optimum cut
off is calculated about 30 and 140 Ry for wave function and
charge density, respectively.

RESULTS AND DISCUSSION

The DOS for ZnS quantum dots sizes 0.47, 0.73, 1.14
and 1.47 nm and bulk system are presented in Figs. 3-7. As
shown in these figures the shape of DOS for small sizes
changed and it looks like a comb. It is also noticed that as the
size of the particle decrease, the band gap increase, as a result
accident the blue shift, as expected by the theory and experiment.
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Fig. 3. DOS for ZnS quantum dot with diameter 0.47nm

From the calculation results of DFT and using eqn. 2, it is
observed that, as the size of the ZnS nano particles decrease,
the EM value will increase. These results are presented in
Table-1. Also the results of DFT method are shown in Fig. 1
and compared with experimental and effective mass approxi-
mation results. The results show that DFT calculation for
quantum dot is good and fit to experiment. Because we solve
Hamiltonian of ZnS quantum dot the results are better than
the effective mass approximation.

Diameter (Å)

872  Tehrani et al. Asian J. Chem.



-15 -10 -5 0 5 10

0

20

40

60

80

100

120

140

160
0.73 nm

D
O

S

energy (eV)

Fig. 4. DOS for ZnS quantum dot with diameter 0.73 nm
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Fig. 5. DOS for ZnS quantum dot with diameter 1.14 nm

Fig. 6. DOS for ZnS quantum dot with diameter 1.47 nm

By using the results of DFT approximation the changes
of the effective mass versus the diameter of quantum dot draw
in Fig. 8. This figure is show that the effective mass of ZnS
quantum dot increase with decrease the size of ZnS quantum
dot. The equation that show this variation is

 

-15 -10 -5 0 5 10 15

0

10

20

bulk

D
O

S

energy (eV)

Fig. 7. DOS for ZnS bulk

TABLE-1 
∆E AND EFFECTIVE MASS FOR DIFFERENT  

SIZES OF ZnS QD BY USING DFT 
Size (nm) ∆E (eV) Effective mass (me) 

Bulk 0.00 0.21 
1.47 0.90 0.44 
1.14 1.30 0.53 
0.73 1.75 0.90 
0.47 3.30 1.25 
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According this equation with increase the R, µ converge
to the 0.21 me that it is the bulk effective mass ZnS. For larger
size of 2.5 nm variation of effective mass for ZnS quantum
dot is small and negligible. Therefore if we input the bulk
effective mass for the large size of quantum dot the results
is in agreement with experiment. But for small size of ZnS
quantum dot results isn't correct. If we want to use the eqn. 2
we must input the correct effective mass.
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Fig. 8. Effective mass approximation as a diameter of ZnS quantum dots
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We input eqn. 3 in eqn. 2 and derive new equation and
calculate variation of energy for different size of ZnS quantum
dot. The results of new method for effective mass approximation
is shown in Fig. 9 and compared with old effective mass
approximation and experimental results. This new effective
mass approximation acquired with experimental result.
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Fig. 9. Triangle is EMA, the square is new EMA and the circle is
experimental results
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