

Some Hexa-Coordinated Lanthanide(III) Iodide Complexes with Schiff Bases of Cyanoethylated benzaldehyde

KISHOR ARORA^{1,*}, MUKESH SHARMA² and K.P. SHARMA³

¹Department of Chemistry, Government K.R.G. Autonomous Post Graduate College, Gwalior-474 001, India ²Department of Chemistry, G.L.S. College, Banmore-476 444, India ³Department of Chemistry, S.M.S. Government Science College, Gwalior-474 002, India

*Corresponding author: kishorarora@rediffmail.com; kishoraroda@gmail.com

(Received	: 4 Janua	ary 2010;
-----------	-----------	-----------

A series of 16 new complexes of lanthanide(III) iodide, with the Schiff base ligands, 2-methyl-4-NN-*bis*-2'- cyanoethylaminobenzylidineaniline [MCEABAB], 2-methyl-4-NN-*bis*-2'-cyanoethylaminobenzylidine *p*-chloro aniline [MCEABCAB], 2-methyl-4-NN*bis*-2'-cyanoethylaminobenzylidine *p*-toludine [MCEABPT] and 2-methyl-4-NN-*bis*-2'-cyanoethylamino-benzylidine *p*-fluoroaniline [MCEABFAB] were synthesized. The complexes were characterized on the basis of elemental analyses, molecular weight determinations, conductivity measurements, IR spectra and electronic spectra. Mass spectra and TGA studies for the formation of complexes with general formula $[Ln(L)_4I_2]I$, [where Ln = La, Ce, Sm and Gd; L = MCEABAB, MCEABCAB, MCEABPT and MCEABFAB] were analyzed. Some of the synthesized complexes were tested for biological activity against a variety of test organisms, a few of them were found to be moderately effective.

Accepted: 20 September 2010)

Key Words: Lanthanide(III) iodide complexes, Synthesis, Structural, Biological properties.

INTRODUCTION

Lanthanides form complexes with variable coordination numbers and mixed geometries. Keeping above in view it is planned to synthesize some new lanthanide(III) metal complexes with nitrogen donor ligands especially Schiff bases with iodide anion¹⁻⁵.

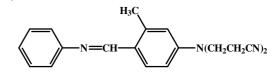
EXPERIMENTAL

All the Schiff bases were synthesized as reported⁶.

Synthesis of complexes: Lanthanide(III) iodide (1 mmol) and absolute ethanol (15 mL) were taken in a flask fitted with a stirrer. A solution of corresponding Schiff base (4 mmol) in ethanol (10 mL) was added slowly to the stirred solution. In some cases the complexes were isolated immediately in cold, while in other case in hot solution. The crystal of the complexes were collected under suction, washed with solvent them with ether and finally dried in vacuo over anhyd. CaCl₂.

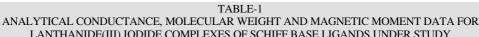
General reaction proposed for the formation of complexes is [Ref. 7]:

$$M(I)_3 + 4L \xrightarrow{\text{Ethanol}} M(L)_4(I)_3$$

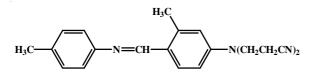

RESULTS AND DISCUSSION

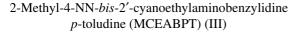
AJC-9097

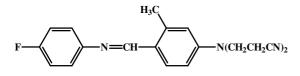
The analytical data for the complexes are given in Table-1. The complexes are quite stable and can be stored for a long period at room temperature ca. 30 °C, however after a few weeks, the complexes have been found to decompose to sticky mass.

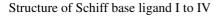

The values of molecular weight, magnetic moment, melting points and calculated and found percentages of C, H, N are incorporated in Table-1. The iodide complexes are 1:1 electrolytes as revealed by their conductance values^{8,9}.

Mass spectral studies of ligands: Mass spectral studies of ligands MCEABAB, MCEABCAB, MCEABPT and MCEABFAB have been done and their molecular weights have been confirmed from the parent and base peaks appeared in the mass spectra of the ligands. The mass spectral study are furnished in Table-2.


2-Methyl-4-NN-*bis*-2'-cyanoethylaminobenzylidineaniline (MCEABAB) (I)


LANTHANIDE(III) IODIDE COMPLEXES OF SCHIFF BASE LIGANDS UNDER STUDY								
S.	Commission (Colour)	Yield, %	Elemental analysis (%): Found (calcd.)			$\Lambda_{\rm m}$ (ohm ⁻¹	m.w. found	Magnetic
No.	Complexes (Colour)	(m.p., °C)	С	Н	Ν	$cm^2 mol^{-1}$)	(calcd.)	moment (BM)
1	[La(MCEABAB) ₄ I ₂]I	72	48.03	3.86	11.21	51.5	895	Diamag.
	(Light brown)	(168)	(53.81)	(4.48)	(12.55)		(1784)	
2	[Ce(MCEABAB) ₄ I ₂]I	75	50.01	3.92	11.22	52.0	894	2.51
	(Light brown)	(170)	(53.78)	(4.48)	(12.54)	52.0	(1785)	
3	[Sm(MCEABAB) ₄ I ₂]I	74	49.50	3.82	11.29	52.6	900	1.69
	(Light brown)	(152)	(53.48)	(4.45)	(12.47)	52.0	(1795)	
4	[Gd(MCEABAB) ₄ I ₂]I	75	49.64	3.96	10.98	52.8	904	7.81
	(Orange)	(156)	(53.27)	(4.43)	(12.43)	52.0	(1802)	
5	[La(MCEABCAB) ₄ I ₂]I	74	50.20	4.01	10.99	52.1	969	Diamag.
	(Dark brown)	(175)	(49.81)	(3.94)	(11.62)	52.1	(1927)	
6	[Ce(MCEABCAB) ₄ I ₂]I	73	50.26	4.00	10.85	54.9	970	2.40
	(Chocolate)	(154)	(49.79)	(3.94)	(11.61)	54.9	(1928)	
7	[Sm(MCEABCAB) ₄ I ₂]I	80	50.31	4.03	10.89	53.3	971	1.41
	(Brown)	(156)	(49.51)	(3.91)	(11.55)	55.5	(1939)	
8	[Gd(MCEABCAB) ₄ I ₂]I	75	51.01	4.10	11.02	53.2	976	7.60
	(Light brown)	(180)	(49.33)	(3.90)	(11.51)	55.2	(1946)	
9	[La(MCEABPT) ₄ I ₂]I	74	51.55	4.80	12.13	51.9	925	Diamag.
	(Light brown)	(220)	(54.75)	(4.78)	(12.16)	51.9	(1841)	
10	[Ce(MCEABPT) ₄ I ₂]I	75	52.03	4.73	12.10	54.6	926	2.45
	(Dark brown)	(184)	(54.72)	(4.77)	(12.16)	54.0	(1842)	
11	[Sm(MCEABPT) ₄ I ₂]I	78	49.30	4.01	12.00	52.4	930	1.38
	(Dark brown)	(210)	(54.39)	(4.74)	(12.08)	52.4	(1853)	
12	[Gd(MCEABPT) ₄ I ₂]I	73	49.10	4.10	11.95	53.3	936	7.78
	(Brown)	(200)	(54.19)	(4.73)	(12.04)	55.5	(1860)	
13	[La(MCEABFAB) ₄ I ₂]I	70	48.20	3.25	11.21	52.3	934	Diamag.
	(Light brown)	(166)	(51.66)	(4.09)	(12.05)	52.5	(1858)	
14	[Ce(MCEABFAB) ₄ I ₂]I	68	48.18	3.38	11.25	55.4	933	2.41
	(Dark brown)	(200)	(51.64)	(4.08)	(12.04)	55.4	(1859)	
15	[Sm(MCEABFAB) ₄ I ₂]I	70	48.36	4.01	10.32	53.1	939	1.45
	(Brown)	(190)	(51.36)	(4.06)	(11.98)	55.1	(1869)	
16	$[Gd(MCEABFAB)_4I_2]I$	71	49.11	3.98	10.35	52.9	942	7.74
	(Light brown)	(165)	(51.17)	(4.05)	(11.94)	52.7	(1876)	




2-Methyl-4-NN-*bis*-2'-cyanoethylaminobenzylidine *p*-chloroaniline (MCEABCAB) (II)

2-Methyl-4-NN-*bis*-2'-cyanoethylaminobenzylidine *p*-fluoroaniline (MCEABFAB) (IV)

TABLE-2					
S. No.	ar at m/e				
5. INO.	Schiff base ligands	Parent peaks	Base peaks		
1	MCEABAB	316	317		
2	MCEABCAB	351	351		
3	MCEABPT	330	331		
4	MCEABFAB	335	335		

Infrared spectral studies: Metal-iodide band appears usually in far IR region below 200 cm⁻¹, since the region of the spectra currently studied for the complexes is 4000-400 cm⁻¹, the metal-iodide band could not be studied.

The azomethine stretching frequency which appears 1599-1584 cm⁻¹ region in ligands, shifts toward 1516-1501 cm⁻¹ in complexes which shows that the azomethine nitrogen is involved in the formation of complexes. This is also confirmed by the appearance of new band at about 497-475 cm⁻¹ which is signal for a metal ligand band. The partial infrared spectral data for lanthanide(III) iodide complexes of Schiff base ligands are given in Table-3.

Electronic spectral studies: Electronic spectra studies of some of the representative complexes of lanthanide(III) iodide with Schiff bases have also been carried out successfully.

Typical spectral data for solution of the complexes were investigated in non-aqueous media. The shift of hypersensitive

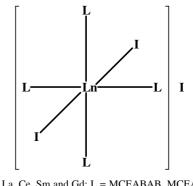
TABLE-3 PARTIAL INFRARED SPECTRAL DATA FOR LANTHANIDE(III) IODIDE COMPLEXES OF SCHIFF BASE LIGANDS

S.	Complement	ν(C=N)	v(Ln-N)
No.	Complexes	stretching	(Metal-ligand
1.0.		(azomethine)	vibration)
1	MCEABAB	1584 s	-
2	[La(MCEABAB) ₄ I ₂]I	1502 sh	480 w
3	[Ce(MCEABAB) ₄ I ₂]I	1510 w	482 w
4	[Sm(MCEABAB) ₄ I ₂]I	1512 m	497 w
5	[Gd(MCEABAB) ₄ I ₂]I	1512 m	480 w
6	MCEABCAB	1599 s	-
7	[La(MCEABCAB) ₄ I ₂]I	1509 m	485 w
8	[Ce(MCEABCAB) ₄ I ₂]I	1514 sh	483 w
9	[Sm(MCEABCAB) ₄ I ₂]I	1516 sh	490 w
10	[Gd(MCEABCAB) ₄ I ₂]I	1511 m	492 w
11	MCEABPT	1591 s	-
12	[La(MCEABPT) ₄ I ₂]I	1512 s	485 w
13	[Ce(MCEABPT) ₄ I ₂]I	1510 w	490 w
14	[Sm(MCEABPT) ₄ I ₂]I	1511 m	495 w
15	[Gd(MCEABPT) ₄ I ₂]I	1511 m	480 w
16	MCEABFAB	1590 s	-
17	[La(MCEABFAB) ₄ I ₂]I	1506 m	480 w
18	[Ce(MCEABFAB) ₄ I ₂]I	1505 w	490 w
19	[Sm(MCEABFAB) ₄ I ₂]I	1501 w	475 w
20	[Gd(MCEABFAB) ₄ I ₂]I	1507 m	485 w

bands has been utilized to calculate the nephlauxatic effect (β) in the complexes. From β values the covalency factor ($b^{1/2}$), Sinha's covalency parameter (δ %) and covalency angular overlap parameter (η) have been evaluated.

The values of $(1-\beta)$ and δ % have been found to be positive for the complexes. This suggests covalent bonding between the metal and the ligand is covalent^{10,11}. The electronic spectral data are furnished in Table-4.

Thermogravimetric analysis: Thermogravimetric analysis for checking the thermal stability and liberate in ligand in complexes.


Thermal studies of two representative complexes viz., [LaI₃·4(MCEABFAB)] and [CeI₃·4(MCEABPT)] have been carried out. Thermograms of the complexes showed that in different stages of decomposition they partly liberated ligands and ultimately metal oxide were formed as end products in all cases^{12,13}.

$LaI_{3} \cdot 4(MCEABFAB) \xrightarrow{230-320 \circ C} LaI_{3} \cdot 1.07(MCEABFAB)$
$\xrightarrow{510-575^{\circ}\!\!\mathbb{C}} \text{LaI}_3 \cdot 0.688(\text{MCEABFAB}) \xrightarrow{720-745^{\circ}\!\!\mathbb{C}} \text{La}_2\text{O}_3$
(1)
CeL.4(MCEABPT) $^{80-120^{\circ}C}$ CeL.388(MCEABPT)

$$\xrightarrow{220-310\,^{\circ}\text{C}} \text{CeI}_3 \cdot 1.46 \text{ (MCEABPT)} \xrightarrow{710-790\,^{\circ}\text{C}} \text{Ce}_2\text{O}_3 \tag{2}$$

Probable coordination structures of the complexes: Based on conductance and molecular weight data of lanthanide(III) iodo complexes, showed that one out of the three iodo ions should be present outside the coordination sphere. Hence coordination number six is suggested for metal ion in these lanthanide(III) iodide complexes¹⁴.

The probable structure suggested for the complexes is given the Fig. 1.

[Ln = La, Ce, Sm and Gd; L = MCEABAB, MCEABCAB, MCEABPT and MCEABFAB] (C.N. = 6) Fig. 1.

Antimicrobial studies: Antimicrobial viz. antifungal and antibacterial studies of representative lanthanide(III) iodide complexes have also been carried out successfully.

These studies were carried out on Aspergillus fumigatus, Aspergillus niger and Mucor species among fungi and E. coli species in bacteria using paper disc method on appropriate nutrient medium. The colony diameters were measured after 48 h of inculated^{15,16}.

ELECTRONIC SPECTRAL DATA (cm ⁻¹) AND RELATED BONDING PARAMETERS OF LANTHANIDE(III) IODIDE COMPLEXES OF SCHIFF BASES									
S. No.	Complexes	Lanthanide salts electronic spectral band (cm ⁻¹)	Complex electronic spectral band (cm ⁻¹)	Energy levels	(1-β)	β	b ^{1/2}	δ%	η
		24850	24271	${}^{4}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{9/2}$	0.0232990	0.976700	0.1526400	2.384520	0.0115813
1	[Sm(MCEABAB) ₄ I ₂]I	24100	23809	$\rightarrow {}^{6}P_{5/2}$	0.0120746	0.987920	0.1098800	1.222200	0.0060216
		21600	20920	$\rightarrow {}^{4}I_{13/2}$	0.0314810	0.965510	0.1774290	3.250450	0.0156191
		24850	24330	${}^{4}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{9/2}$	0.0209250	0.979070	0.1446540	2.137270	0.0104097
2	[Sm(MCEABCAB) ₄ I ₂]I	24100	23696	$\rightarrow {}^{6}P_{5/2}$	0.0170124	0.982980	0.1304318	1.730690	0.0084646
		21600	20496	$\rightarrow {}^{4}I_{13/2}$	0.0513425	0.948657	0.2265880	5.412122	0.0252310
		24850	24096	${}^{4}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{9/2}$	0.0303420	0.969658	0.1741890	3.129140	0.0150541
3	[Sm(MCEABPT) ₄ I ₂]I	24100	23584	$\rightarrow {}^{6}P_{5/2}$	0.0214100	0.978590	0.1463210	2.187840	0.0106471
		21600	20833	$\rightarrow {}^{4}I_{13/2}$	0.0355090	0.964491	0.1884380	3.681630	0.0175940
		24850	24330	${}^{4}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{9/2}$	0.0209250	0.979070	0.1446540	2.137270	0.0104097
4	[Sm(MCEABFAB) ₄ I ₂]I	24100	23809	$\rightarrow {}^{6}\mathrm{P}_{5/2}$	0.0120740	0.987926	0.1098840	1.222150	0.0060187
		21600	20920	\rightarrow ⁴ I _{13/2}	0.0314814	0.968518	0.1774290	3.250400	0.0156151

TABLE-4
ELECTRONIC SPECTRAL DATA (cm ⁻¹) AND RELATED BONDING PARAMETERS OF
LANTHANIDE(III) IODIDE COMPLEXES OF SCHIFF BASES

Results are summarized in Table-5 MIC (minimum inhibitory concentration) in these ranges for these complexes are denoted by astericks (*). The complexes selected are found to be moderately effective against fungal and bacterial species.

TABLE-5 ANTIFUNGAL AND ANTIBACTERIAL ACTIVITIES OF SOME OF THE REPRESENTATIVE COMPLEXES OF LANTHANIDE(III) MEAL IONS WITH SCHIFF BASE LIGANDS (AFTER 48 h OF INCUBATION)						
	0	1 mg/10 mL	2 mg/10 mL	3 mg/10 mL		
		La(MCE	EABCAB) ₄ (I) ₃			
A. fumigatus	0.4 cm	0.2 cm	0.2* cm	0.2 cm		
A. Niger	0.3 cm	0.2 cm	0.2* cm	0.2 cm		
Mucor sps.	1.0 cm	0.5 cm	0.5* cm	0.5 cm		
Gd(MCEABFAB) ₄ (I) ₃						
A. fumigatus	0.5 cm	0.5 cm	0.2* cm	No growth		
A. Niger	0.5 cm	0.5 cm	0.1* cm	No growth		
Mucor sps.	0.5 cm	0.4 cm	0.3 cm	0.1* cm		
Ce(MCEABFAB) ₄ (I) ₃						
E. coli sps.	0.1* cm	0.1 cm	0.1 cm	0.1 cm		
Sm(MCEABPT) ₄ (I) ₃						
E. coli sps.	0.2 cm	0.2 cm	0.1 cm	0.3 cm		
*Minimum value						

REFERENCES

- 1. E.V. Kleber, Rare Earth Research, MacMillan, New York (1961).
- 2. T. Moeller, The Chemistry of Lanthanides, Rein Hold New York (1963).
- 3. R.C. Vickery, Chemistry of Lanthanides, Butter Worths.
- 4. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Inter Science, New York, edn. 3, Ch. 27 (1972).
- 5. C.K. Jorgensen, J. Inorg. Nucl. Chem., 1, 301 (1955).
- 6. K. Arora, M. Sharma and K.P. Sharma, Asian J. Chem., 23, 519 (2011).
- 7. R.K. Agarwal, N. Goel and H. Agarwal, Asian J. Phys., 9, 339 (2000).
- 8. R.K. Agarwal, K. Arora and R.K. Sarin, *Synth. React. Inorg.-Met. Org. Chem.*, **24**, 735 (1994).
- 9. R.K. Agarwal, P.C. Jain, V. Kapur, V. Sharma and A.K. Srivastava, *Transition Met. Chem.*, **5**, 237 (1980).
- 10. S.P. Tondon and P.C. Mehta, J. Chem. Phys., 52, 4314 (1970).
- R.A. Baily, S.L. Kozak, T.W. Michelson and W.N. Mills, *Coord. Chem. Rev.*, 6, 407 (1971).
- 12. K. Arora and B.K. Sharma, Asian J. Chem., 10, 1032 (1998).
- 13. R.K. Agarwal and K. Arora, Polish J. Chem., 67, 25 (1993).
- 14. R.K. Agarwal and S.K. Gupta, Polish J. Chem., 61, 341 (1987).
- 15. K. Arora, D.P. Sharma and S. Sharma, Asian J. Chem., 11, 1357 (1999).
- K. Arora, D.P. Sharma and M.C. Pathak, Orient. J. Chem., 15, 331 (1999).

IUPAC-INTERNATIONAL CONFERENCE ON CHEMICAL RESEARCH APPLIED TO WORLD NEEDS (CHEMRAWN) 2011

27 — 29 SEPTEMBER, 2011

PUTRA WORLD TRADE CENTRE, KUALA LUMPUR, MALAYSIA

Contact:

CHEMRAWN 2011 Secretariat Institut Kimia Malaysia, 127B, Jalan Aminuddin Baki, Taman Tun Dr Ismail, 60000 Kuala Lumpur, Malaysia Tel: 6 03-7728 3272; Fax: 6 03-7728 9909 E-mail: chemrawn2011@ikm.org.my; ikmmy@tm.net.my Website: http://www.ikm.org.my/chemrawn2011.html Registration Form on-line: http://www.ikm.org.my/chemrawn_registration.html