Palladium(II) and Platinum(II) Complexes with Mixed Ligands of Tertiary Monophosphines and 5-Phenyl-1,3,4-ox-adiazole-2-thione or 4,5-Diphenyl-1,2,4-triazole-3-thione

ADNAN M. QADIR†, ALI I. ABDULLAH†, SUBHI A. AL-JIBOR‡ and TALAL A. K. AL-ALLAF*

Department of Chemistry, College of Basic Sciences, Applied Science University, Amman 1193, Jordan

Several new palladium(II) and platinum(II) complexes containing two types of ligands: tertiary monophosphines (L) and 5-phenyl-1,3,4-oxadiazole-2-thione ion (A) or 4,5-diphenyl-1,2,4-triazole-3-thione ion (B) have been prepared. The so obtained complexes *trans*-[PdA₂L₂], *trans*-[PdB₂L₂] and *cis*-[PtA₂L₂] were characterized by elemental analysis, IR, UV-Vis, ³¹P NMR spectroscopy, molar conductance and magnetic susceptibility measurements.

Key Words: Platinum(II), Palladium(II), Phosphine, Oxadiazole, Ligands, Complexes

INTRODUCTION

The interaction of thione ligands, which contain the chemically active groups $[-N-HC(=S)-\leftrightarrow -N=C(SH)-]$, with different metals have attracted much attention. These ligands can bind to a metal in several ways¹⁻⁴. The interactions of platinum and gold with N,S-donor atoms have been recognized for their antineoplastic properties with the potential to develop metal based drugs¹⁻⁶. Recently, some papers involving platinum(II) or platinum(IV), gold(II) and ruthenium(II) with tertiary phosphines as co-ligands have been published 7-10. We have recently reported the synthesis and characterization of some transition metal complexes of tertiary diphosphines and 5-phenyl-1,3,4-oxadiazole-2thione¹¹. In continuation of our findings, e.g., trans-palladium complexes^{12, 13} and other related complexes¹⁴ we attempted to synthesize and characterize palladium(II) and platinum(II) complexes containing mixed ligands, tertiary monophosphines and 5-phenyl-1,3,4-oxadiazole-2-thione or 4,5-diphenyl-1,2,4trizole-3-thione. These complexes have the general formulae trans-[PdA₂L₂], trans-[PdB₂L₂] and cis-[PtA₂L₂], where L = tert. phosphine, A and B were the above thione-H. To the best of our knowledge this work has not been previously reported.

[†]Department of Chemistry, College of Science, University of Salahaddin, Erbil, Iraq. ‡Department of Pharmaceutical Science, College of Pharmacy, University of Tikrit, Tikrit, Iraq.

EXPERIMENTAL

³¹P (¹H) NMR spectra were performed at the laboratories of Prof. Wilhelm Keim, Institut für Technische Chemie der RWTH Aachen, Worringer Weg1, D-52074 Aachen, Germany. IR spectra were recorded on a Pye-Unicam SP3-300s spectrophotometer in the 4000–200 cm⁻¹ range using CsI discs. Electronic spectra were obtained using a Perkin-Elmer Lambda-9 spectrophotometer. Elemental analyses were carried out on Carlo-Erba CHN analyzer, type 1106. Magnetic measurements were recorded on a Bruker BM6 instrument at room temperature following the Faraday method. Conductivity measurements were made on a conductivity meter type CDM 83 70. Melting points were recorded on an Electrothermal 9300 melting point apparatus and were uncorrected.

Materials: K₂PtCl₄, Na₂PdCl₄·3H₂O, PPh₃, PMePh₂ and PEt₃ were commercial products and were used as supplied. The ligands 5-phenyl-1,3,4-oxadiazole-2-thione (AH), 4,5-diphenyl-1,2,4-trizole-3-thione (BH), their potassium salts (AK) and (BK), the complexes trans-[PdA₂] (1) and cis-[PtA2] (2) were prepared according to literature methods^{15, 16}. Complex (1) was also prepared by another route (vide infra)

Preparation of complexes

Trans[PdA₂] (1): Solid trans-[PdCl₂(AH)₂]₇·Me₂CO complex (4) (0.27 g, 1.5 mmol) was suspended in MeOH (100 cm³). The mixture was stirred at room temperature for 1 h, then refluxed for 2 h. The orange insoluble solid was filtered off, washed with Et₂O and dried (yield 60%). The complex was obtained as solvated with one mole of H₂O.

Trans-[PdB₂] (3): A mixture of BH (0.37 g, 1.4 mmol) and Na₂PdCl₄·3H₂O (0.25 g, 0.73 mmol) in MeOH (15 cm³) was stirred overnight. The orange solid thus formed was filtered off, washed with cold MeOH then Et₂O and dried under vacuum (yield 97%).

Trans-[PdCl₂(AH)₂] (4): Solid [Na₂PdCl₄]·3H₂O (0.097 g, 0.28 mmol) was added to a solution of AH (0.1 g, 0.56 mmol) in Me₂CO (6 cm³). When the mixture was stirred overnight, an orange solid was formed. This solid was filtered off, washed with H₂O, then MeOH and dried under vacuum (yield 42%). This complex was obtained as solvated with one mole of Me₂CO.

Trans-[PdA₂(PMePh₂)₂] (5): PMePh₂ (0.26 g, 1.3 mmol) was added to a solution of *trans-*[PdA₂] (0.3 g, 0.65 mmol) in CHCl₃ (20 cm³). When the mixture was stirred overnight at room temperature its colour changed from orange to orange-red. 50% of the solvent was removed under reduced pressure and Et₂O was added to give a yellow solid, which was filtered off, washed with EtOH, then Et₂O and dried under vacuum (yield 92%).

In a similar manner, the complexes trans-[PdA₂L₂], [L = PEt₃ (6), PPh₃ (7)] and trans-[PdB₂L₂], [L = PMeP_h2 (8), PEt₃ (9), PPh₃ (10)] were made as solid products.

Cis-[PtA₂(PMePh₂)₂] (11): PMePh₂ (0.15 g, 0.7 mmol) was added to a solution of [PtA₂] in CHCl₃ (20 cm³). The mixture was stirred at room temperature overnight. The solvent then evaporated and Et₂O was added to give a white solid, which was filtered off, dried and recrystallized from CH₂Cl₂.

Similarly the complexes cis-[PtA₂L₂] [L = PEt₃ (12), PPh₃ (13)] were made as solid products.

RESULTS AND DISCUSSION

In our previous work¹¹, we reported that reaction of Na₂PdCl₄·3H₂O with potassium salt of 5-phenyl-1,3,4-oxadiazole-2-thionate (AK) in MeOH gave trans-[PdA₂]·H₂O complex (1). We found that (1) can also be obtained directly by using the free thione; 5-phenyl-1,3,4-oxadiazole-2-thione (AH). A stirring mixture of Na₂PdCl₄·3H₂O and the thione (AH) in Me₂CO at room temperature gave a rather different product, identified as trans-[PdCl₂(AH)₂] (4). The IR spectrum of this complex showed a single strong intensive band at 340 cm⁻¹ which was assigned to v(Pd—Cl) in a trans-arrangement 15; a broad band at 3100 cm⁻¹ [assigned to v(N-H)] appeared in the same position of the free (AH) ligand 16. This indicates that the NH group of the oxadiazole ligand is not taking part in the coordination. The v(C=S) mode occurring at 768 cm⁻¹ in the free ligand 16 underwent a shift to a lower frequency and then appeared at 715 cm⁻¹ after complex formation. This shift indicates that sulphur of the (C=S) group is coordinated to palladium. From these and other data reported in the Tables, structure (I) was proposed for the complex trans-[PdCl₂(AH)₂] (4). This complex is similar, from sulphur-coordination point of view, to that reported recently 17. i.e., structure (II).

However, refluxing of a suspension of trans-[PdCl₂(AH)₂]·Me₂CO (4) in MeOH for a few hours gave trans-[PdA₂]·H₂O (1) as indicated from the analytical data. The IR spectrum of the product (1) showed that the previous v(N—H) band appearing at 3100 cm⁻¹ disappeared indicating a loss of hydrogen from the thione AH. Similarly the strong IR band at 340 cm⁻¹ attributed to v(Pd—Cl) also disappeared from complex (1); this is due to the loss of the chlorides from it. Other analytical data are in a good agreement with the formula trans-[PdA₂] (Tables 1, 2 and 4).

TABLE- 1
PHYSICAL PROPERTIES OF COMPLEXES (1)–(13)

No.	omplex	Colour	Yield (%)	m.p. (°C)	Found (Calcd.) (%)		
					С	Н	N
(1)	trans-[PdA ₂] ^a	orange	60	278–280	40.2 (40.1)	2.6 (2.5)	11.6 (11.7)
(2)	cis-[PtA ₂]	yellow-brown	64	308–310	34.9 (35.0)	1.9 (1.8)	9.8 (10.2)
(3)	trans-[PdB ₂]	orange	97	288–290	55.0 (55.1)	3.3 (3.3)	13.7 (13.8)
(4)	trans-[PdCl ₂ (AH) ₂] ^b	orange	42	347–350	44.3 (44.2)	2.7 (2.4)	8.6 (8.5)
(5)	trans-[PdA ² (PMePh ₂) ₂]	yellow	92	249–252	58.2 (58.5)	4.3 (4.3)	6.5 (6.5)
(6)	trans-[PdA ₂ (PEt ₃) ₂]	yellow	82	138–142	48.0 (48.2)	5.8 (5.8)	8.1 (8.1)
(7)	trans-[PdA ₂ (PPh ₃) ₂]	yellow	98	214–217	63.4 (63.3)	4.1 (4.1)	6.0 (5.7)
(8)	trans-[PdB ₂ (PMePh ₂) ₂]	yellow	97	208–210	64.2 (64.2)	4.6 (4.6)	8.0 (8.3)
(9)	trans-[PdB ₂ (PEt ₃) ₂]	yellow	67	205–208	56.7 (56.8)	6.0 (6.0)	9.8 (9.9)
(10)	trans-[PdB ₂ (PPh ₃) ₂]	orange	54	190–195	65.7 (65.6)	4.2 (4.3)	8.8 (8.8)
(11)	cis-[PtA ₂ (PMePh ₂) ₂]	white	97	262–264	52.9 (53.0)	3.9 (3.8)	5.9 (6.0)
(12)	cis-[PtA ₂ (PEt ₃) ₂]	white	70	174–176	42.5 (42.8)	5.2 (5.1)	7.1 (7.2)
(13)	cis-[PtA ₂ (PPh ₃) ₂]	off-white	81	286–287	57.9 (58.1)	3.8 (3.8)	5.2 (5.3)

^a Complex solvated with one mole of H₂O b Complex solvated with one mole of Me₂CO

Although the thiones AH and BH possess multi-donor centres, their anions A and B, however, acted in complexes (1)–(3) as bidentate ligands bonded to the metal via S and N of NH. From the soft-hard concepts, we believe that the thione ion bonded to the metal as (:S=C-N-) \leftrightarrow (-S-C=N:), *i.e.*, π -allyl like system.

Treatment of the chelated complexes trans-[PdA₂] (1), trans-[PdB₂] (3) or cis-[PtA₂] (2) with two moles of the monophosphine (L) resulted in replacing the coordinated site of the thione to give complexes of the type trans-[PdA₂L₂], trans-[PdB₂L₂] or cis-[PtA₂L₂], respectively, *i.e.*, complexes (5)-(13) (Table-1),

in which the thiones A or B acted as monodentate ligands. Hence, one can expect the possibility of the formation of linkage isomers. IR spectroscopy is an effective tool for the elucidation of such isomers. However ³¹P (¹H) NMR is more

TABLE-2
IR SPECTRAL DATA AND ASSIGNMENTS OF COMPLEXES (1)–(13)

C1	Thiomide bands				(D.) (1)	Othershands	
Complex	I	II	III IV		- ν(P—M)	Other bands	
(1)	1590 vw	1310 vw, 1380 sh	922 w, 965 vw	770 s		3500 b, ν(O—H)	
(2)	1600 m	1305 w, 1360 s	922 w, 965 w	770s		3060 w, v(C-H) aromatic	
(3)	1590 m	1400 s	985 m	765 s			
(4)	1540 w, 1600 w	1440 s	940 s	770 s		340 s, v(Pd—Cl) 3050 m, v(C—H) aromatic 3100 s, v(N—H)	
(5)	1550 w	1440 vs	960 w	775 m, 750 s	415 w	2990 w, v(C—H) aiiphatic 3040 w, v(C—H) aromatic	
(6)	1545 m	1425 vs	965 w	775 m, 760 s	420 w	2960 w, v(C—H) aliphatic 3060 w, v(C—H) aromatic	
(7)	1545 w	1425 vs	955 w	770 s, 750 s	430 w	3045 w, v(C—H) aromatic	
(8)	1595 m	1430 s	970 m	770 s	430 w	3050 w, v(C—H) aromatic	
(9)	1595 m	1435 m	970 m	775 m, 765 s	420 w	3060 w, v(C—H) aromatic	
(10)	1590 m	1430 s	970 m	780 m, 760 s	430 w	3060 w, ν(C—H) aromatic	
(11)	1550 w	1430 vs	960 w	775 m, 750 s	430w	3050 w, v(C—H) aromatic	
(12)	1540 w	1430 vs	960 w	780 m, 755 s	425 w	3060 w, v(C—H) aromatic	
(13)	1545w	1430 vs	960 w	770 s, 750 s	425w	3050 w, v(CH) aromatic	

convenient, hence the spectra of some of the prepared complexes were recorded (Table-3). The ^{31}P (^{1}H) NMR spectrum of e.g., cis-[PtA₂(PMePh₂)₂] (11) showed a singlet at δ 9.6 ppm associated with platinum satellites, J(Pt-P), 2567 Hz. By comparison of δ P of this complex with δ of the cis-[PtCl₂(PMePh₂)₂] (δ , -1.2 ppm) and that of the trans-isomer (δ , 41.3 ppm) we believe that the product is a cis-isomer. The low J(Pt-P) value (2567 Hz) indicates that the complex is a

1186 Qadir et al. Asian J. Chem.

cis-isomer with the phosphorus in trans- relationship to sulphur bonded oxadiazole¹⁸.

TABLE- 3 31 P (1 H) NMR DATA OF SOME SELECTED PHOSPHINE COMPLEXES (5), (7)–(11)

No.	omplex	δP (ppm)	J(Pt—P) (Hz)	Proportions (%)
	cis-[PdCl ₂ (PMePh ₂) ₂] ^a	-19.1		
	trans-[PdCl ₂ (PMePh ₂) ₂] ^a	-7.8		
(5)	trans-[PdA ₂ (PMePh ₂) ₂] ^b	13.3		80, S-bonded
		12.2		20, N-bonded
(7)	trans-[PdA ₂ (PPh ₃) ₂] ^b	29.4		75, S-bonded
		27.3		25, N-bonded
(8)	trans-[PdB ₂ (PMePh ₂) ₂]	13.1		
(9)	trans-[PdB ₂ (PEt ₃) ₂]	18.9		
(10)	trans-[PdB ₂ (PPh ₃) ₂]	24.4		
	cis-[PtCl ₂ (PMePh ₂) ₂] ^a	-1.2	3616	
	trans-[PtCl ₂ (PMePh ₂) ₂] ^a	41.3	3028	
(11)	cis-[PtA ₂ (PMePh ₂) ₂]	9.6	2567	

^a Complexes included for comparison.

In contrast to the ^{31}P (^{1}H) NMR spectrum of (11) which showed one singlet, the ^{31}P (^{1}H) NMR of the palladium analogue trans-[PdA₂(PMePh₂)₂] (5) showed two singlets at δ , 13.3 and 12.2 ppm in the ratio of 4: 1 and no coupling between the singlets was observed, which suggested the presence of two isomers. By comparison with δ of the cis- and trans-[PdCl₂(PMePh₂)₂] [δ , -19.1 and -7.8 ppm, respectively) we believe that the product is the trans- isomer consisting of two linkage isomers. The proportion of the S-bonded isomer is 80 and of the N-bonded is 20 per cent. Similarly, the spectrum of the complex trans-[PdA₂(PPh₃)₂] (7) showed the two isomers too in almost similar proportions (75 and 25%, respectively). However, the ^{31}P (^{1}H) NMR spectrum of the corresponding triazole complexes trans-[PdB₂L₂] [L = PMePh₂ (8), PEt₃ (9) or PPh₃ (10)] showed them to be a single isomer each.

Conductivity measurements indicate that all the prepared complexes are non-electrolytes¹⁹, while magnetic susceptibility measurements of the prepared complexes showed them to be diamagnetic consistent with four coordinate square- planar d^8 complexes. The electronic spectral data of the complexes were in good agreement with the suggested geometrics for the four-coordinate metal centres being square-planar²⁰.

^b Complexes appeared in solution in two isomeric forms, the S-bonded and the N-bonded.

Complex	Electronic spectra λ_{max} (nm)	Assignments ^b		
(1)	440, ¹ A _{1g}	\longrightarrow $^{1}B_{1}$,		
	354	$^{1}A_{1g}\longrightarrow ^{1}E_{g}$		
(2)	287	c.t.		
(3)	355	$^{1}A_{1g}\longrightarrow ^{1}E_{g}$		
(4)	a			
(5)	324, c.t.,			
	375	$^{1}A_{1g} \longrightarrow ^{1}B_{1g}$		
(6)	368	$^{1}A_{1g} \longrightarrow ^{1}B_{1g}$		
(7)	$368, {}^{1}A_{1g}$	\longrightarrow $^{1}B_{1g}$		
	470	$^{1}A_{1g} \longrightarrow ^{1}A_{2g}$		
(8)	286, c.t.,,	•		
	370	$^{1}A_{1g} \longrightarrow ^{1}B_{1g}$		
(9)	306, c.t.,			
	386	$^{1}A_{1g} \longrightarrow ^{1}B_{1g}$		
(10)	344, ¹ A _{1g}	\longrightarrow $^{1}E_{g}$		
	392	$^{1}A_{1g} \longrightarrow {}^{1}B_{1g}$		
(11)	324, c.t.,			
	374	$^{1}A_{1g} \longrightarrow ^{1}B_{1g}$		
(12)	316	c.t.		
(13)	a			

TABLE- 4
UV-Vis DATA OF COMPLEXES (1)–(13)

a: Insoluble;

b: c.t. charge transfer absorption band.

ACKNOWLEDGEMENTS

We thank Prof. Dr. Wilhelm Keim, Institut für Technische Chemie der RWTH Aachen, Worringer Weg1, D-52074 Aachen, Germany, for his help in obtaining the ³¹P NMR data.

REFERENCES

- 1. E.S. Raper, Coord. Chem. Rev., 61, 115 (1985).
- 2. ——, Coord. Chem. Rev., 129, 191 (1994).
- 3. ——, Coord. Chem. Rev., 153, 199 (1996).
- 4. ——, Coord. Chem. Rev., 165, 475 (1997).
- 5. J. Reedijk, Inorg. Chim. Acta, 198-200, 873 (1992).
- K.J. Barnham, M.I. Djuran, P. del Socorro Murdoch and P. J. Sadler, J. Chem. Soc. Chem. Commun., 721 (1994).
- L.J. McCaffrey, W. Henderson, B.K. Nicholson, J.E. MacKay and M.B. Dinger, J. Chem. Soc. Dalton Trans., 2577 (1997).
- 8. G. Stucco, F. Gattuso, A.A. Isaab and C.F. Shaw III, Inorg. Chim. Acta, 209, 129 (1993).

- 9. T.S. Lobana, R. Verma, G. Hundal and A. Castineiras, Polyhedron, 19, 899 (2000).
- 10. M. El-Kateeb, Transition Met. Chem., 26, 267 (2001).
- 11. S.A. Jibori, I.N. Al-Nassiri and L.J. Al-Hayaly, Transition Met. Chem., 27, 191 (2002).
- 12. T.A.K. Al-Allaf and L.J. Rashan, Eur. J. Med. Chem., 33, 817 (1998).
- A.S. Abu-Surrah, T.A.K. Al-Allaf, L.J. Rashan, M. Klinga and M. Leskeld, Eur. J. Med. Chem., 37, 919 (2002).
- T.A.K. Al-Allaf, H. Schmidt, K. Merzweiler, C. Wagner and D. Steinborn, J. Organometal. Chem., 678, 48 (2003).
- K. Nakamoto, Infrared and Ramon Spectra of Inorganic and Coordination Compounds, 5th Edn., John Wiley & Sons, Inc., New York (1997).
- 16. A.H. Jassim, Iraqi J. Sci., 39A, 13 (1998).
- 17. E.M. Padilla, J.H. Yamamoto and C.M. Jenseu, Inorg. Chim. Acta, 174, 209 (1990).
- E. Colacio, R. Cuesta, M. Ghazi, M.A. Huertas, J.M. Moreno and A. Nararrete, *Inorg. Chem.*, 36, 1652 (1997).
- 19. W.J. Geary, Coord. Chem. Rev., 7, 81 (1971).
- 20. A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd Edn, Elsevier, Amsterdam (1984).

(Received: 22 February 2004; Accepted: 5 March 2004) AJC-3337

IUPAC ICOS-15 (15TH INTERNATIONAL CONFERENCE ON ORGANIC SYNTHESIS)

NAGOYA, JAPAN

AUGUST 1-6, 2004

Contact:

Secretariat of ICOS-15

c/o International Communications Specialists

Inc., Sabo Kaikan-bekkan, 2-7-4 Hirakawa-cho

Chiyoda-Tokyo 102-8646, Japan

Tel: +81 3 3263 6474Fax: +81 3 3263 7537

E-mail: icos@ics-inc.co.jp www.ics-inc.co.jp/icos15