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A projection operator method and density matrix formalism to
calculate the rate (transition probability per unit time) of the two-
photon process in which the damping effect originating from the
molecule-heat bath interaction is properly taken into account and
applied this method to resonance Raman scattering.
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INTRODUCTION

The density matrix method is useful in treating relaxation processes, linear
and non-linear laser spectroscopies and non-equilibrium statistical mechanics.

Expressions for the transition probabilities of multiphoton and ionization
processes have been derived by several theoretical methods. The time-dependent
perturbation has been used to calculate the rate constant of multiphoton and
various relaxation processes’* 2. A systematic formulation of theory of multiphoton
processes has been presented based on the Green’s function method'. Assuming
the hot bands with molecules initially at the jth vibrational level, the Green’s
function approach has been used to derive the expression for Raman scattering
cross-section’. To derive a general expression for the relaxation process, Fujimura
and Lin* have utilized the Liouville operator technique for the time evolution of
the density matrix of the total system by NakajimaS and Zwanzig®. Within this
density matrix formalism both steady-state and transient optical phenomena can
be studied* "*.

In this paper, we shall consider a dynamical system consisting of molecules
which interact with a heat bath (or reservoir) and the weak monochromatic
radiation field. It is assumed that interaction between the molecular system and
the heat bath is responsible for the energy damping of the vibronic levels of the
molecules. In this paper, we shall show that the density matrix method can directly
provide the dynamic information of both population and coherence (or phase).

We shall use the projection operator and the density matrix method to obtain
an expression for transition probabilities of two-photon scattering. We first derive
the master equation that describes how one state relaxes into other states and how
other states populate it. It is notable that one of the important applications of the
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master equation arises in the investigation of damping when light interacts with
matter. This derivation is performed in two steps by the projection operator
method. In one step, we shall omit all of the heat bath variables, and in the other,
all of the radiation field variables. The expressions for two-photon transition
probability are then obtained by using the derived master equation. In this method,
the Markov approximation is used. It is assumed that the coupling between the
dynamical system and the radiation field is sufficiently weak so that the
molecule-radiation field interaction time is instantaneously short compared with
the time of the change of the molecular system density matrix and finally the
derived expression of the two-photon transition probability to Raman scattering
will be applied.

General Theory

Consider a quantum system whose state is represented by a wavefunction
| w(t)). Using an arbitrary basis set, {|m)}, the wavefunction can be expanded as

lW() = Z ap(t)|m) 0]

As this point the density operator may be defined as 6(t) = |y(Xw(t)|. In the
basis set, it can be written as:

B(t) = = Ppn(t)|m¥n] @)
m,n

Here pp,(t) = am(t)a,,*(t) is the density operator matrix element.
For investigating the time evolution of the density operator and derive its
equation of motion, we start from time derivative of the density operator.
P (3 d
m =(—t lw®) | (WO + W) | 5 (vl €);
) A

Using the time dependent of Schrédinger equation 0|y)/dt = —(i/m)H|y(t)) and
its Hermitian conjugate, we get

B iy @
at_ n[ ’p]

This- equation shows time evolution of the density operator and is called the
quantum Liouville equation. The jk matrix element of Eq. (4) is as

dpj i
gt = 7y % i~ Pymbi] )
m
This can be rearranged in the following form:
dpe
=71 = LixmPmn ©

Upon the comparison of Egs. (5) and (6), we have

1 1
Lixmn = n (HjmOn — H:nsjm) 1 (HjmOxn — Hydjm) @)
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The Liouville equation that describes the motion of the density matrix for the
system is given by

36 AA ,
3 = iLp @®

A ‘ A
where L is called the Liouville operator (or Liouvillian) and L denotes a super
operator .

Calculation of the Rate of Two-Photon Process
Considering a total system consisting of the molecular system, heat bath and
A

radiation field. In the equation (8), Liouville operator L is
A AO AO AO A A
I‘=Ig'+LR'+L@'fIéB +IéR (9)
A 0 A 0 A 0 A A
here Lg, Lg, Lg, Lgg , Lsg are Liouville operators of the system molecular, the

heat bath, the radiation field, the interaction Liouville operators between the
system molecular and the heat bath, and the radiation field, respectively.
A

Hamiltonian H of the total system has the form
A A A
H=Hy+H’ (10)

A A A A A A , A , A A A A , A )
with Hy = Hg + Hp+ Hg and H’ = Hgg + Hgg. Here Hg, Hg, Hg, Hgp and Hgg are
Hamiltonian operators of the system molecular, the heat bath, the radiation field,
the interaction Hamiltonian between the system molecular and the heat bath, and
the radiation field, respectively. We are concerned only with the time-dependent
behavior of the system, which is described by the reduced density matrix obtained
by eliminating the heat bath and radiation field variables, respectively. For this
purpose, in first step, it is necessary to eliminate heat bath variables; reduced
density operator B‘SR), where B(SR) =Trgp has been introduced. Trg represents
the operation of carrying out a trace over the quantum states of the heat bath. In
the second step, radiation field variables by introducing system reduced density
operator, 6(5), where 6(5) =Trgp®® has been eliminated. Try represents the
operation of carrying out a trace over the quantum states of the radiation field.
Thus to obtain the system reduced density matrix 6(3) it is necessary to know the
matrix elements of p and p® are denoted by Pmmym,, nmypn, and pgg,{, nm_Where
indices (ng, my), (n,, my,), (n,, m;) describe the molecular system, heat bath and
radiation field variables respectively.

A
For eliminating the heat bath variables, the projection operator Py has been
introduced such that

A . A A
Pgp=p1, (1-Pe)o=ps P1+p2=p (11)
and its matrix elements can be written by

[Sllm,mm- nay, = Pmmm, non Omya, 12)
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A
La _PB)S-lrruanrn,nbn,:(l = 85 )Pmmym, noyn, 13)
Applying the Laplace transform method to Eq. (8) yields
A
pA(p) - P(0) =-iLA(p) (14)

where S(p) denotes the Laplace transform of 6(() and 6(0) is the density matrix
of the total system at t =0.

p (0 = p0)p P0)p® () (15)

Here 6(8)(0), 6(5)(0), S(R)(O) are the density operator of molecular system, heat
bath and radiation field in equilibrium condition, respectively.

A A
Apply Py and (1 - Pg) to Eq. (14) and use the Eq. (11), result

A A A AL A A
PP1(P) — P1(0) =—iPsL py(p) - iPsL Pa(p) (16)
A A . A A A . A A A
PP2(p) — P2(0) = —i(1 — Pp)L py(p) —i(1 — Pp)L P2(p) an
From Eq. (17), substituting p,(p) in Eq. (16) yields
A A ‘I\ A A ./\ A 1 A A A
pP1(p) — P1(0) = —iPpL py(p) = iPgL ———— P2(0) ~M(P)ps(p)  (18)
p+i(1-Pg)L
A AN A 1 A A
where M(p) =PgL —————~ (1 -Pp)L (19)
p+i(1-Pg)L
We can trace over the heat bath variables (Trg) to Eq. (18).
pp SP(p) - pP(0) = -iL p®(p) - M(p)p “V(p) (20)
where L =Trg Pol. p®(0)) = L + LY + TrgLss p®(0) @1)

M(p) = Trg[M(@)p ®(0)] = L5 (1 "ﬁa)( )(1 Polis PEO)  (22)

P+ilL
(SR) A

Applying Trgp =p*", p; = p(SR)p ®)(0), in equilibrium condition of heat bath
(t =0) where p = 0 and eliminating heat bath variables, we get

tp+iLs +ilQ + (Z)sJp SP(p) = pER(0) 23)
where (Z(p))p = Trg Z(p)p®(0) (24)
2(p) =iLgp +Lép (1 -Pg)(p+iL)™'(1 - Pp)Lsp (25)

A
Projectli\on operator Py will be applied to eliminate radiation field variables.
Operator Py is defined as

A A A A
PO =W, (1-POBSN=BFN, BN+ @e)
and its matrix elements can be written by

O m, ng, = PSR, wnBemae L1~ PP 0n = (1 - 8a)pR  @D)
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Applying operators PR and (1 - PR) to Eq. (23), substitute Ls Ls + Lsn , and
use Eq. (26) and Eq. (27), to give
A CALA AA A A A,
ppS®(p) +iLS p{®(p) + iPrLér P™(p) +iPrLér P5™(p)
A A
+ P(Z(0))e P 0(p) + PRE®)s PN (D) = pR(0) (28)
AGRY Y 4L OASRDY 4 i(1 = Pl 2o BO(D) +i(1 = Poll Lo SR
PPz (p) +iLsps™(p) + i( ®)Lsr P1”(P) +i( r)Lsr P2 (P)
ACA A A
+iLRPS™®(P) + (1 - PRXE(P)eP{ () + (1 - PRXZ(D)PSP () =0 (29)

From Eq. (29) for p{S®(p) can be solved by substituting it in Eq. (28) and
trace over the radiation field variables (TrR), to yield

A . A . A 7’ o A ’
pp(p) +iLY(P) + Trel (Lér + (Z(N)PI™(p). - Trr{liLér + (Z(p))s
. A A A A A A
x [(1 - Pr)(p +iL§ +iLg +iLr +(Z(p))B)(1 ~ PRI '[iLsr +(Z(p))s1P{*™(P)}
=p0) (30)
where p®(p) = TrR6 SR)(p). It is easy to show that
PR =5 ®p®(0) @31
Here p(R)(O) is equilibrium distribution of radiation field. In the equilibrium
PN m =0 and Z, ol =1
Substituting Eq. (31) to Eq. (30) yields
A A
Lp +iL$ + (M(p)}) %) = (0) (32)
where ICI(p) is the transition operator
A . A , . A , A A A . A ,
M(p) =iLér +(Z(p))s —LiLér +(Z(p))s] (1 -PR)V(1 —Pp) LiL&r +(Z(p))s]
(33)

A 1
where V= A (34)

A A
p+iLg +iLg +ils +(= (P))s

Carrying out the inverse Laplace transformation of Eq. (32), the equation for
the reduced density matrix S(S)(t) is obtained as

) AogA A A
i‘%t—=—iL8p‘s’(o—f "dt (M@POe-v) (35)
where (M) =55 apthe) exp oo (36)

This integral is called the Bromwich integral and is evaluated along the vertical
line x = ¢ and the complex plane p. In obtaining Eq. (35), the convolution theorem
has been used. This equation can be written as

dp(

= L8 - I de{M(9)} exp (LI 37)
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Here the expansion 3(5)(t —1) along T=0,
+oo n jn n
pOt-v= 2 CRELEO0=exp (- aap®0 08
n=0 .

A

and the approximation of replacing d/dt in Eq. (38) by —iL{ have been used. Eq.
(37) is called the generalized master equation (GME), which can yield both the
diagonal and off diagonal matrix elements of the density matrix of the system.
While the diagonal matrix elements of p(s)(t) describe the tlme evolution of the
population of the system, the off-diagonal matrix elements of p(s)(t) provide the
phase information of the system and determine the Lorentzian bandwidths and
the band shifts of optical spectra.

For defining the rate constant, the Markov approximation is applied, i.e., the
molecule-radiation field interaction time is instantaneously short compared with
the time of the change of the molecular system density matrix. This means that
the future development of a Markovian system is determined entirely by the most
recent state whereas the past history of the system has no influence on its future
behaviour. In this approximation Eq. (37) can be written as

0 _

=il -0po (39)
where
= lim f dt{M(1)} exp GLY%) (40)
t—oo

Equation (39) is the master equation for the multiphoton processes of the
molecular system in the presence of the heat bath and radiation field. A

For multiphoton processes, we should calculate the transition operator M(p)
from Eq. (33). This involves solving Eq. (34). The term V in this equation can
be written as

= G(p) + G(p)(~iLix )V (41)

where
G(p)=———— “2)
p+ild+il2 +(Z (p)s -

Eq. (41) solved by iterative method, yields
V = G(p) + G(p)(~iLér )G®) + G(p)(-iL4x )G(P)(-iL4x )G(p)
+ G(p)(-iLér )G(p)(~iLég )G(P)(~iL4R JG(P) + . - @3)
Substituting Eq. (43) to Eq. (33) gives
M(p) = iLg +(Z(p)a - (Léx +EEN)(1 - Po) LG®)
+ )L JG0) + G(pX-iL4r )5P-iLx )o6p) + )
(1-PRilis +EENp) @4)
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A
Then the transition operator M(p) can be expanded as
V(o)) = (MO v @ Y
M)} ={MT(p)} + (MV@P)} + (M)} + (MTP)} +...  (@5)

where the transition operators with superscripts related to the photon number
involved in the processes for example radiationless, one-, two-, three-, . . . photon
processes, respectively.

The two-photon transition probabilities are defined as

dpQm (©)
WO=% lim —= (46)
m t—oe dt

Substituting Eq. (36) and Eq. (40) into Eq. (39) and using diagonal matrix
elements of density operator, transition probability is given by

@ : 0 T Y D108, S)

WO=- iim = | dr(;—.JI, dp exp GOIMO@)aE, 6O 4D

t—+eo m,n, 0 T | ~jeo 4+ ¢
A A

where MO} = = pf) (0) IMP(p)Ias i, (48)

mn,
I_IOI(Z) [ERT LA’ AN A ANAA _Jn,n,.n,n,
@ ne = - Lip G(P)Lég GP)Lér G(p)Lég J3 49)

The matrix element of the transition operator is given by
A A , A , A , N , A ., A .
M) = - 2 Lix KGO PIRALER JAAIG O @)irlLr I (G ()5

AA’
H' A
L& BT
=25 S Ehandin Handan) GO H, By ~ Hra S GO

AA’
A

(HLSrr — Hirdu)[GO(p)1AA (Hindix — HaOnw) (50)

2

n Re f’ E H,NLH'LMH'MAI‘I’AN{G(o)(P)AMG(O)(p)NLG(O)(p)NM

+ GOP)aMGOP)AL(GOP)nr. + GOP)an)}

A A
where H’ = Hgg, N =nn,, M =mgm, and so on. Here the effect of the radiation
field-molecule interaction in G(p) has been neglected.

G(p) = GOp) = [p +iLL + LY + (SO (p))g]™ 51)
A A A A
with E%p))p = (Lép (p +iLg +iLY) 'Lip) (52)
where  GOplyny = GCOPRN = (P +i0nm ng + Timg)™

Here 'y, = (Z(o)(p))m' is the dephasing rate constant relevant to the m and
n molecular states.
We can simplify Eq. (50) using the relations
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G(o)(p)AMG(o)(p)NLG(O)(p)NM
= GOp) NGO PN GO pm + GOPIN GO PIMIGO(P)am — GO(p)an]
= GO)AnG O (PN GO (P)wm + [-1 + (Tan — Tam + Tn) GO0
x GO(p) smG(p) NGO (D) (54)
GOP)AmG PGP + GOP)an)

= (1 + (O + Tan - TaDGOP)a0) COmGOON G Py (55)
Substituting Eq. (54) and Eq. (55) into Eq. (50) gives

M@(p)iv = ME(P)m + M) + ME (P (56)
with
M&i(p) =- %Re 2 Z Hy HoHua HanGOomvGO(p)anG%. (57
AL

2
- ;]_4_ Re GO(p)mt | E}I’MAG(O)(P)WI'I;NIZ

2

Mﬁ?,(p) =- fq‘Z Re E E (Tan + T + T ) Hae HivHvaHan

X GO(p) AMG P GO (P)aL GO(P)an (58)

2 ’ ’ ’
M, (p)V = - s ReZE (Cax ~Tam + T Ha HivHvaHan

X GO(P)mGOP) amG V() anG O (P)nL (59)

Substituting Eq. (56) into Eq. (47), in terms of the simultaneous, sequential,
and mixed processes, the two-photon transition probability becomes

t C+ico
W= 1im 22p8,0) | dt|o [ dpexp EIMBERN
t—oo MN * 0 27 |7 ¢ - joo
+ M@ P)vm + MEu ()]
=Wh+ W + Wi (60)

In Eq. (60), first integrals over p are carried out by the method of Coushi integral,
and then time integrals are evaluated. We have

2 ,
Wi =5 ZZp8) plo(0) Re Z = HyyHynHy vy
N MN AL

1
> (0nat + Do) iyt + Tre)ipg + Trent)

HuaHan

A i(DAN+rAN

(61)

2

-2 ©) o® 1
n* P Paa O Re G T
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, 2
HyaHan
A OaAN T erN

I
—lzzzzp@“) p®(0) ——
N* m,0,m,n, (oonm + Tom)
1 - Im
(ionm+Tm) | (T + OFn) -
For the sequential and the mixed process, respectively, we have

W3 =2 Rezz 230 pR(0) B (Tay = Taw + T
0

Here we have used Re |:

m;n, m n,
y Hy HovHyaHan ©
(@am = iIFam)(OnL — iITND(@aN — iTAN)(@AL — iTAL)
wﬁx—lRezzzz PS5 <R)(0)zz(rAN—rAM+rNM)
1" mnmn,
Hy HiHuaHo
NL LM IMATIAN ( 63)

(wNM = iCam)(@am = iICAM)(@aN — iICaAN) (O — i)
where the subscripts in capital letters specify both the molecular state and
radiation fields.

Calculation of transition probability in resonance Raman scattering

Two-photon processes, including scattering, two-photon emission and two-
photon absorption may occur in two sequential one-photon steps or in two
simultaneous steps. In the former, an atom may absorb or emit a single photon,
then during the lifetime of its excited state, it may absorb or emit another photon
to reach a new state. In the latter, two-photons are simultaneously absorbed and
emitted, as only the beginning and end of the process are observable but
intermediate states are not observable experimentally. Raman scattering process
is a two-photon process that cannot be decomposed into individual steps;
intermediate states are not separable in time and are not detectable. We will
evaluate two-photon transition probability of resonance Raman scattering. A
simultaneous process makes a dominant contribution to this process and transition
probability can be calculated by Eq. (61).

Similar to the method described in the previous section, we can derive the
master equations for a system coupled in a heat bath and describe the proper time
dependent behaviour of both dlagonal and off-diagonal portios of the density
matrix.

We find that I'vn = Dwvn(@) + iNyn(d) ' (64)

Than(®) = aa *+ Trn) + Tk (65)

Here M = mym,, N = nyn,. The term I'yn(r) is called the dephasing rate constant
where Ty =g and Ty =T are known as population decay constant
which are related to the life times of the states |m,) and |n,) by T =Ty, and



1102 Dehestani Asian J. Chem.

To =TT, respectively. I is known as a pure dephasing constant. It is a

constant associated with an elastic process which disturbs the phase of the wave
function but do not disturb the populations of states because the system does not
change energy in the pure dephasing process. Its contribution is significant in the
presence of additional damping mechanism such as collision processes, phonon
interactions, intramolecular processes, lattice interactions and various other
processes. The term I'yn(i) =1",'§‘,:’,}: (i) represents the energy level shift of the

system due to its interaction with the heat bath.

An expression for rate of resonance Raman scattering process by using Eq.
(60) can be obtained. In two-photon scattering the effects of pure dephasing are
negligibly small compared with the population decay constants of the intermedi-
ate and/or final states the simultaneous process makes a dominant contribution
to the two-photon process and transition probability is given by Eq. (61). Raman
. scattering can be described with basis set consisting of the initial state
(IN) = |ng, my,, m;Pu7)), final state (|M) = |m;, my, ~1m7,2+ 1) and intermedi-
ate states (|A) = |a, ny,, mOu” + 1), (JA) =|ag, ny, = 1, ;7 p?)).

Assuming that the radiation field can be expressed in terms of monochromatic
plane wave in the radiation cavity with volume V, so that the density matrix of
radiation field at t = 0 is p®(0) = | mumy/y Xmpumy’|, in the dipole approximation,
and the low temperature (p® = 1), the transition probability per unit time of
two-photon resonance Raman scattering is given by

| M) €M)
_ !2“!3 , » (slu anJ\CNu"Mma
“,n,ms = ,n204 00y (M + 1) fﬁ ,:1, W, — 0o = ira’
(ekuMmsas)(sz'Ma,n,) 2
Oqm, + 0 +il } 8(Omgn, = @3 + ) (66)

where ), and W)/, are incident and scattered photon frequency, ®, , and ®, m,
are the vibronic energy gaps, €,,(€)’’) is the polarization direction of the incident
(scattered) laser and Mym, M, , are transition dipole moments.

RESULTS AND DISCUSSION

In the perturbation method, transition probability two-photon is given by
2

_2n Z_I:ILH:‘N S(Ovm) 67)

NoM~™
- N |a WaN

where indices in capital letters specify both the molecular state and radiation field.

‘Comparing this relation with Eq. (60) which is obtained by density matrix method,
it may be shown that

(a) Derived probabilities by using density matrix method involve not only

those of simultaneous processes, but also those of sequential and mixed

that cannot be obtained by using the conventional time dependent
perturbation.
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(b) Within the density matrix method, we can take into account the effect of
dephasing that from originating the molecule heat bath interaction.

In the perturbation method and in the dipole approximation, expression of
transition probability of Raman scattering is similar to above Eq. (66) except
without damping constant, but in the resonance conditions Wy, =, the
damping instant I'y, is introduced by phenomenological to avoid singularities.

Conclusion

A molecule can lose its energy by making non-radiation transitions such as
collisions and interaction with other molecules when it is coupled to the
environment. The process whereby a dynamical system such as a molecule
progresses toward equilibrium (steady state) with its heat bath is known as
relaxation or damping. The use of ordinary perturbation method cannot take into
account the damping effect. Without a complete quantum mechanical treatment,
we cannot hope to account for the non-radiative transition rate (damping constant)
except in a phenomenological way.

The temporal behaviour of the density operator is of central importance in the
time development of a physical system under the influence of various interactions.
Density matrix formalism is a convenient way to describe relaxation dynamics
of a molecule when it can interact with its surrounding, often referred to as the
bath. One of the merits of applying the density matrix method to two photon
processes is that one can take into account the effects of dephasings that originate
from the molecule-heat bath interaction. The derived transition probabilities
involved not only those of simultaneous processes but also those of sequential
ones that cannot be obtained by using the conventional time dependent perturba-
tion.
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