Preparation and Characterization of the Dichloro bis-(2-Pentyne) Complex [WCl₂(CO)(NCMe)(η^2 -EtC₂Me)₂]

MUTLAQ AL-JAHDALI

King Abdulaziz University, Science Faculty, Chemistry Department P.O.Box 80203, Jeddah 21589, Kingdom of Saudi Arabia E-mail: mutlaqaljahdali@hotmail.com

Preparation of $[WCl_2(CO)_3(NCMe)_2]$ by reacting of $[Wl_2(CO)_3(NCMe)_2]$ with two equivalents of NaCl in acetone, followed with an excess of EtC_2Me (2-pentyne) in CH_2Cl_2 gives the 2-pentyne complex $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Me)_2]$ (1).

Equimolar quantities of 1 with $(L = NPh_3 \text{ and } PPh_3)$ react in CH_2Cl_2 to give the acetonitrile replaced products, $[WCl_2(CO)(PPh_3)(\eta^2-EtC_2Me)_2]$ (2) and $[WCl_2(CO)(NPh_3)(\eta^2-EtC_2Me)_2]$ (3) in good yield. Reaction of 1 with equimolar amount of bidentate of $\{L_2 = Ph_2P(CH_2)_nPPn_2 \ (n = 1-5)\}$ in CH_2Cl_2 at room temperature afforded the mono-(2-Pentyne) complexes, $[WCl_2(CO)(Ph_2P(CH_2)_nPPh_2)(\eta^2-EtC_2Me)]$ (n = 1-5) (4-8).

Key Words: Preparation, Characterization, Dimeric monoalkyne complex, Tungsten(II).

INTRODUCTION

In 1988 Baker *et al.* reported the synthesis of the dimeric mono-alkyne complexes¹ [{M(M-I)I(CO)(NCMe)(η^2 -RC₂R¹)}₂] (M = Mo, W; R = R¹ = Me, Ph, CH₂Cl; R = Ph, R¹ = Me, CH₂OH; R = Me, R¹ = PhS, P-tols) and the bis (alkyne) complexes² [{Mo(M-I)I(CO)(η^2 -MeC₂Me)₂}₂] and [MI₂(CO)(NCMe)-(η^2 -RC₂ R¹)₂] (M = Mo, W; R = R¹ = Ph; R = Me, R¹ = Ph; for M = W only; R = R¹ = Me, CH₂Cl; P-tol; R = Ph, R¹ = CH₂OH). An extensive iodoalkyne chemistry of molybdenum(II) and tungsten(II) was developed³⁻⁹. In 1994, Baker *et al.*^{10,11} described the synthesis and reactions with donor ligands of dibromobis(2-butyne) complex, [WBr₂(CO)(NCMe)(η^2 -MeC₂Me)₂]. Baker *et al.*¹² reported a series of mixed chloroido-alkyne complexes, including the X-ray structural characterization of the cationic complex, [WCl(CO)(2, 2¹-bipy)(η^2 -MeC₂Me)₂]I. Many papers have been published¹³⁻¹⁷ describing some new dichloro-alkyne complexes such as [WCl₂(CO)(L₂)(η^2 -PhC₂Ph)] (L = PMe₃, PMe₂Ph), [WCl₂(CO)(PMe₃)₂(η^2 -Ph₂C₂NH¹BU)], [WCl₂(CO)(PMe₃)₂(η^2 -PhC₂Ph)] {R = OH, OC(O)C₆H₄OMe-4} and [WCl₂(=CHPh)(PMe₃)₂ (η^2 -PhC₂Ph)] which have been crystallographically characterized.

In 2000, the preparation of the seven-coordinate dichloro-complex $[WCl_2(CO)_3(NCMe)_2]$ by the reaction of $[WI_2(CO)_3(NCMe)_2]$ with two equivalents of NaCl in acetone has been reported¹⁸.

1052 Al-Jahdali Asian J. Chem.

In 2001, Mutlaq and Baker¹⁹ described the synthesis of [WCl₂(CO)(NCMe)(η^2 -EtC₂Et)₂] by the reaction of [WCl₂(CO)₃(NCMe)₂] with 3-hexyne and also described the above complex with neutral and anionic donor ligands.

In this paper, we used same methods to synthesize and characterize the seven-coordinate dichloro-complex [WCl₂(CO)₃(NCMe)₂] with 2-pentyne following the reaction with mono-dentate and bidentate ligands.

EXPERIMENTAL

Reagents and general techniques: The starting material $[WCl_2(CO)_3.(NCMe)_2]$ was prepared in situ by reacting $[WI_2(CO)_3(NCMe)_2]$ with two equivalents CH_2Cl_2 in acetone. The reactions were carried out by using standard vacuum/schlenk line techniques. The solvent CH_2Cl_2 was dried over calcium hydride and diethyl ether was dried over sodium wire. All chemicals used were purchased from commercial sources.

Elemental analyses (C, H and N) were determined by using a Carlo-Erba elemental analyser MoD 1108 (using helium as the carrier gas). IR spectra were recorded as thin CHCl₃ films on a Perkin-Elmer FT 1600 series IR spectrophotometer.

 1 H, 13 C and 31 P NMR spectra were recorded on a Bruker AC 250 MHz NMR spectrometer, and spectra were referenced to SiMe₄ for 1 H and 13 C or 85% 13 PO₄ for 31 P.

Preparation of [WCl₂(CO)(NCMe)(\eta^2-EtC2Me)₂] (1): To a stirred solution of [WCl₂(CO)₃(NCMe)₂] {which were prepared in situ by reaction of [WI₂(CO)₃(NCMe)₂] (0.5 g, 0.82 mmol) with two equivalents of NaCl (0.096 g, 1.6 mmol)} (0.5 g, 1.2 mmol) in CH₂Cl₂ (25 cm³) was added excess of EtC₂Me (0.16 g, 0–14 mL, 1.2 mmol). Filtration and removal of solvent in vacuo after 24 h, gave the green oily product of [WCl₂(CO)(NCMe)(η^2 -EtC₂Me)₂] (1), which was recrystallized several times (yield = 0.25 g, 47%).

Preparation of [WCl₂(CO)(PPh₃)(\eta^2-EtC₂Me)₂] (2): To a stirred solution of [WCl₂(CO)(NCMe)(η^2 -EtC₂Me)₂] (1) (0.3 g, 0.65 mmol) in CH₂Cl₂ (20 cm³) was added PPh₃ (0.17 g, 0.65 mmol). Filtration and removal of solvent in vacuo after 24 h, gave the green powder [WCl₂(CO)(PPh₃)(η^2 -EtC₂Me)₂] (2) (yield of product = 0.15 g, 56%).

Similar reaction of [WCl₂(CO)(NCMe)(η^2 -EtC₂Me)₂] with one equivalent of NPh₃ in CH₂Cl₂ at room temperature give the complex [WCl₂(CO)(NPh₃)(η^2 -EtC₂Me)₂] (3) (Table-1).

Preparation of [WCl₂(CO)(Ph₂P(CH₂)PPh₂)(η^2 -EtC₂Me)] (4): To a stirred solution of [WCl₂(CO)(NCMe)(η^2 -EtC₂Me)₂] (1) (0 2 g, 0.4 mmol) in CH₂Cl₂ (20 cm²) at room temperature was added Ph₂P(CH₂)PPh₂ (0.16 g, 0.4 mmol). Filtration and removal of solvent *in vacuo* after 24 h gave the green powder [WCl₂(CO){Ph₂P(CH₂)PPh₂}(η^2 -EtC₂Me)] (4) (yield of product = 0.18 g, 60%).

Similar reactions of [WCl₂(CO)(NCMe)(η^2 -EtC₂Me)₂] (1) with one equivalent of Ph₂P(CH₂)_nPPh₂ (n = 2-5) in CH₂Cl₂ at room temperature gave the complexes [WCl₂(CO)(Ph₂P(CH₂)_nPPh₂)(η^2 -EtC₂Me)] (n = 2-5) (5-8) (Table-1).

TABLE-1
PHYSICAL AND ANALYTICAL DATA FOR THE CHLOROCARBONYL 2-PENTYNE
TUNGSTEN COMPLEXES (1–8)

Complex No.	Complex	Colour	% Elemental analysis: Found (Calcd.)		
		(Yield %)	С	Н	N
1	[WCl ₂ (CO)(NCMe)(η ² -EtC ₂ Me) ₂]	Green	35.30	3.8	2.6
		(47)	(35.6)	(4.0)	(2.9)
2	$[WCl2(CO)(PPh3)(\eta^2-EtC2Me)2]$	Green	51.0	4.1	
		(56)	(51.1)	(4.5)	
3	$[WCl2(CO)(NPh3)(\eta^2-EtC2Me)2]$	Green	52.0	4.4	1.9
		(54)	(52.4)	(4.6)	(2.1)
4	[WCI ₂ (CO)(Ph ₂ P(CH ₂)PPh ₂)(η^2 -EtC ₂ Me)]	Green	50.2	3.9	
		(60)	(50.6)	(4.08)	
5	$[WCl2(CO){Ph2P(CH2)2PPh2}(\eta^2-EtC2Me)]$	Green	50.9	4.3	
		(43)	(51.2)	(4.2)	
6	$[WCl2(CO){Ph2P(CH2)3PPh2}(\eta^2-EtC2Me)]$	Green	51.6	4.2	
		(56)	(51.9)	(4.4)	
7	$[WCl2(CO){Ph2P(CH2)4PPh2}(\eta^{2}-EtC2Me)]$	Green	52.3	4.2	
·		(28)	(52.5)	(4.6)	
8	$[WCl2(CO){Ph2P(CH2)5PPH2}(\eta^{2}-EtC2Me)]$	Green	52.8	4.6	
	V - 2 V - 2 V - 2/3 2/V 2/2	(32)	(53.1)	(4.8)	

RESULTS AND DISCUSSION

Synthesis and characterization [WCl₂(CO)(NCMe)(η^2 -EtC₂Me)₂] (1): Reaction of [WCl₂(CO)₃(NCMe)₂] (prepared *in situ as* described previously with an excess of 2-pentyne gives the new bis(2-pentyne) complex [WCl₂ (CO)(NCMe)(η^2 -EtC₂Me)₂] (1) which has been characterized by IR (Table-2), ¹H and ¹³C NMR (Tables 3 and 4).

Complex 1 is very much less stable than its diiodo analogue $[WI_2(CO)(NCMe)(\eta^2-EtC_2Et)]^{20}$ and $[WCI_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]^{19}$. It was difficult to obtain pure powder even after many attempts, but it can be used for reaction if used very quickly. Complex 1 is also same for solubility of analogue complex of $[WCI_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]^{19}$ but less soluble in chlorinated solvents and diethyl ether and hydrocarbon solvents compared to its diiodo analogue²⁰. The IR spectrum for 1 (CHCl₃) has strong carbonyl band at 2073 cm⁻¹, which is at same number compared to $[WCI_2(CO)(NCMe)(\eta^2-Et_2C_2Et)_2]$ at 2079 cm⁻¹; but at higher wavenumber compared to diiodo of previous complex at 2056 cm⁻¹.

1054 Al-Jahdali Asian J. Chem.

TABLE-2
INFRARED DATA ^a FOR THE CHLOROCARBONYL 2-PENTYNE TUNGSTEN
COMPLEXES (1–8)

Complex No.	ν(C = O) cm ⁻¹	ν(C≡N) cm ⁻¹	$v(C = C) cm^{-1}$
1	2073 s	1632 w	1609 w
2	2067 s	1642 w	_
3	2075 s	1603 w	_
4	1937 s	1604 w	_
5	1941 s	1601 w	
6	1942 s	1598 w	
7	1929 s	1607 w	_
8	1932 s	1611 w	
9 .	1935 s	1600 w	

^aspectra recorded in CHCl₃ as thin films between NaCl plates; s = strong, w = weak.

TABLE-3

¹H NMR DATA^a FOR THE CHLOROCARBONYL 2-PENTYNE TUNGSTEN COMPLEXES (1–8)

Complex No.	¹ Η NMR (δ) ppm
1	3.5 (q, 4H, CH ₂ , 2-Pentyné); 3.2 (s, 6H, CH ₃ , 2-Pentyne); 2.70 (S, 3H, CH ₃ , CN); 1.2 (t, 6H, CH ₃ -CH ₂ , 2-Pentyne)
2	7.8-7.2 (m, ¹ SH, Ph); 3.6-3.2 (mq, 4H, CH ₂ Pentyne); 3.1 (s, 6H, CH ₃ Pentyne); 1.2 (t, 6H, CH ₂ CH ₃ Pentyne)
3	7.3–6.8 (m, 15H, Ph); 3.3 (q, 4H, CH_2 Pentyne); 3.1 (s, 6H, Pentyne); 1.2 (t, 6H, CH_2CH_3 Pentyne).
4	7.5-7.1 (m, 20H, Ph); 4.7 (m, 2H, CH ₂ dppm); 3.6 (q, 4H, CH ₂ Pentyne); 3.0 (s, 6H, CH ₂ CH ₃ Pentyne); 1.2 (t, 6H, CH ₂ CH ₃ Pentyne)
3	7.5–7.1 (m, 20H, Ph); 3.4 (q, 4H, CH ₂ Pentyne); 3.2 (s, 6H, <u>CH</u> ₃ Pentyne); 2.7–2.5 (t, 2H, 2H dpp); 2.7–2.5 (2t, 4H, dppe); 1.1 (t, 6H, CH ₂ <u>CH</u> ₃ Pentyne).
6	7.4–7.2 (m, 20H, Ph); 3.4 (q, 4H, CH ₂ Pentyne); 3.1 (s, 6H, <u>CH₃ Pentyne</u>); 2.6 (t, 2H, CH ₂ CH ₂ -CH ₂ dppp); 2.4 (2t, 4H, CH ₂ CH ₂ CH ₂ dppp); 1.2 (t, 6H, CH ₂ <u>CH₃ Pentyne</u>).
7	7.6–7.2 (m, 20H, Ph); 3.5 (q, 4H, CH ₂ Pentyne); 3.2 (s, 6H, CH ₃ Pentyne); 2.4 (m, 4H, dppb); 2.1 (m, 4H, dppb); 1.3 (t, 6H,CH ₂ <u>CH₃</u> Pentyne).
8	7.6–7.2 (m, 20H, Ph); 3.6 (q, 4H, CH ₂ Pentyne); 3.3 (s, 6H, CH ₃ Pentyne); 2.8 (m, 2H, dpppe); 2.6 (m, 4H, dpppe); 2.3 (m, 4H, dppe); 1.5 (t, 6H, CH ₂ CH ₃ Pentyne).

^aSpectra recorded in CDCl₃ (25°C) and referenced to SiMe₄; s = singlet; br = broad; d = doublet; m = multiplet; t = triplet; q = quarter.

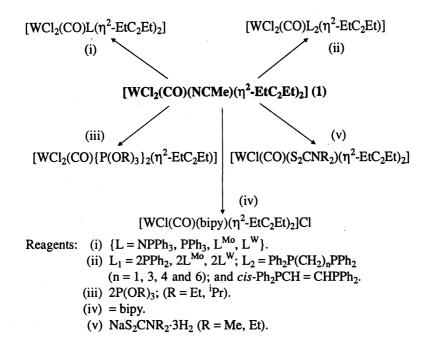
TABLE-4

13C NMR DATA^a (δ) FOR SELECTED CHLOROCARBONYL 2-PENTYNE TUNGSTEN COMPLEXES

Complex No.	¹³ C NMR (δ) PPm
1	9.7 (s, Me, CN); 12.8 (S, CH ₂ CH ₃ , Pentyne); 20.30 (s, CH ₃ C ₂) Pentyne; 27.95; 28.30 (s, CH ₂ CH ₃ Pentyne); 130.45 (s, C≡N); 163.46, 167.50 (s, C≡C); 198.28 (s, C≡O)
2	12.93 (S, CH ₃ Pentyne); 28.63 (s, CH ₂ Pentyne); 25.72 (s, CH ₃ CH ₂); 123.53, 124.17, 129.30 (s, Ph); 163.20, 165.65 (s, C \equiv C); 195.30 (s, C \equiv O)
3	13.25 (s, CH ₃ Pentyne); 27.25 (s, CH ₂ Pentyne); 26.37 (s, CH ₃ CH ₂); 122.67, 123.18, 123.60 (S, Ph); 148.96 (s, C \rightleftharpoons N); 162.50, 166.26 (s, C \rightleftharpoons C); 195.80 195.80 (s, C \rightleftharpoons O)

^aSpectra recorded in CDCl₃ (25°C) and referenced to SiMe₄; s = Singlet.

In view of the similar IR, 1 H and 13 C-NMR spectral properties of the dichloro complex 1 to the related diiodo alkyne complexes $[WI_2(CO)(NCR)(R^1C_2R^1)_2](R = Me, R^1 = Me, Ph^2; R = But, R^1 = Me^{21}; R = Me, R^1 = Ph^{22})$, which have all been crystallographically characterized. It is very likely that the structure of 1 will be very similar as shown in Fig. 1.


Fig. 1. Proposed structure of [WCl₂(CO)(NCMe)(η^2 -EtC₂Me)] (1)

The room temperature $^{13}\text{C-NMR}$ spectrum (CDCl₃) for complex 1 (Table-4) has alkyne contact carbon resonances at $\delta = 162.57$ and 167.30 ppm, which from correlation of Templeton and Ward²³ suggests that the two 3-hexyne ligands are donating a total of six electrons to the tungsten, which also enables complex 1 to obey the effective atomic number rule. From previous paper¹⁹ have been prepared many complexes starting from complex [WCl₂(CO)(NCMe)(η^2 -EtC₂Et)₂] with both neutral and anionic donor ligands. These results are summarized in **Scheme-1**.

This paper describes the reactions of complex, $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Me)_2]$ (1) with monodentate such as PPh₃ and NPh₃ and bidentate ligands, such as Ph₃P(CH₃)_nPPh₂.

Reaction of [WCl₂(CO)(NCMe)(η^2 -EtC₂Me)₂] (1) with one equivalent of PPh₃ and NPh₃ (23): Reaction of equimolar amounts of 1 and PPh₃ and NPh₃ in CH₂Cl₂ at room temperature gives the acetonitrile exchanged products. [WCl₂(CO)(PPh₃ or NPh₃) (η^2 -EtC₂Me)₂] (2 or 3).

1056 Al-Jahdali Asian J. Chem.

Scheme 1.

Complex (2) is more stable than (1) but less than (3). Complex (3) more soluble than complex (2).

All two complexes 2 and 3 decompose very quickly when exposed to air in solution, and are also air-sensitive in the solid state, but can be stored under dinitrogen for several weeks. Complex 2 has a single carbonyl band in its IR spectrum at 2067 cm⁻¹ and 2075 cm⁻¹ for complex 3 (Table-2) in a similar position to 1 and would be expected to have a similar structure as the acetonitrile complex shown in Fig. 1.

Also the room temperature 13 C-NMR spectrum (CDCl₃) of the most soluble complex in this series, [WCl₂(CO)(PPh₃ or NPh₃)(η^2 -EtC₂Me)₂] (2, 3), shows alkyne contact carbon resonances at $\delta = 169.62$ and 163.43 ppm for complex 2 and $\delta = 166.73$ and 161.20 ppm for complex 3, which again indicates²³ that the two 2-pentyne ligands are donating a total of six electrons to the metal in this complex, which enables the complexes to obey the effective atomic number rule.

Reaction of $[WCl_2(CO)(NCMe)(\eta^2\text{-EtC}_2Me)_2]$ (1) with one equivalent of bidentate of $(Ph_2P(CH_2)_nPPh_2)$ n=(1-5): Treatment of 1 with $Ph_2P(CH_2)_nPPh_2$ (n=1-5) in CH_2Cl_2 at room temperature eventually gave the mono (2-Pentyne) complexes $[WCl_2(CO)(Ph_2P(CH_2)_nPPh_2)(\eta^2\text{-EtC}_2Me)]$ (4-8).

All the new complexes have been characterized in the normal manner (Table-5). These bis(phosphine) complexes are more stable than 1-3, and can be stored for several weeks under a nitrogen atmosphere, and they are also stable in air in the solid state for 5 h. The complexes 4-8 are much less soluble in chlorinated solvents such as CH_2Cl_2 and $CHCl_3$ compared to 1-3.

TABLE-5
³¹ P NMR DATA ^a (δ) FOR SELECTED CHLOROCARBONYL 2-PENTYNE TUNGSTEN
COMPLEXES

Complex No.	³¹ P NMR (δ) ppm
2	–26.73 (s, PPh ₃)
4	-23.25 , -23.65 (d, $J_{P-P} = 41.72$, H_2 2P, of dppm)
5	-19.14 , -18.32 (d, $J_{P-P} = 53.23$, H_2 2P, of dppe)
6	-17.24 , 16.65 (d, $J_{P-P} = 59.63$, 2P, of dppp)
7	-14.26 , -13.95 (d, $J_{P-P} = 62.53$, 2P, of dppb)
8	-10.63 , -10.45 (d, $J_{P-P} = 67.64$, H_2 2P, of dppe)

^aSpectra recorded in CDCl₃ (25°C) and referenced to 85% H₃PO₄ (s, singlet, d, doublet).

The bidentate phosphine ligand complexes $[WCl_2(CO)(Ph_2P(CH_2)_nPPh_2)(\eta^2-EtC_2Me)]$ (n = 1-5) (4-8), which has been structurally characterized for n = 3. In view of the similar spectroscopic properties of $[WX_2(CO)\{Ph_2P(CH_2)_3PPh_2\}(\eta^2-EtC_2Et)]$ {X = Cl, $\nu(CO)$ = 1944 cm⁻¹; X = I^{20} , $\nu(CO)$ = 1942 cm⁻¹}; $I^{3}P-NMR$ for X = Cl, δ = -18.13 and -17.62 ppm, for X = I^{20} , δ = -23.73 and -36.21 ppm}, it is likely that they will have a similar structure as shown in Fig. 2.

Fig. 2. Proposed structure of [WCl₂(CO){Ph₂P(CH₂)₃PPh₂}(η^2 -EtC₂Me)] (6).

ACKNOWLEDGEMENTS

Many thanks to all technicians at Chemistry Department, K.A.A. University, Jeddah, Saudi Arabia.

REFERENCES

- E.M. Armstrong, P.K. Baker and S.G. Fraser, J. Chem. Res., 52 (1988); J. Chem. Res. (M), 410 (1988).
- 2. E.M. Armstrong, P.K. Baker and M.G.B. Drew, Organometallics, 7, 319 (1988).
- 3. P.K. Baker, M.G.B. Drew, S. Edge and S.D. Ridyard, J. Organomet. Chem., 409, 207 (1991).
- 4. P.K. Baker, E.M. Armstrong and M.G.B. Drew, Inorg. Chem., 27, 2287 (1988).
- E.M. Armstrong, P.K. Baker, M.E. Harman and M.B. Hursthouse, J. Chem. Soc. Dalton Trans., 295 (1989).
- 6. P.K. Baker, E.M. Armstrong and M.G.B. Drew, Inorg. Chem., 28, 2406 (1989).
- 7. E.M. Armstrong, P.K. Baker, K.R. Flower and M.G.B. Drew, J. Chem. Soc. Dalton Trans., 2535 (1990).
- 8. P.K. Baker, Adv. Organomet. Chem., 40, 45 (1996) and references cited therein.
- 9. ——, Chem. Soc. Rev., 27, 125 (1998) and references cited therein.

- 10. P.K. Baker, D.J. Muldoon, A.J. Lavery and A. Shawcroos, Polyhedron, 13, 2915 (1994).
- 11. P.K. Baker, A. Bury and K.R. Flower, Polyhedron, 8, 2587 (1989).
- 12. P.K. Baker, M.G.B. Drew, M.M. Meehan, H.K. Patel and A. White, J. Chem. Res. (S), 379 (1998); J. Chem. Res. (M), 1461 (1998).
- 13. P.B. Winston, S.J.N. Burgmayer and J.L. Templeton, Organometallics, 5, 1707 (1986).
- B.J. Brisdon, A.G.W. Hodson, M.F. Mahon, K.C. Molloy and R.A. Walton, *Inorg. Chem.*, 29, 2701 (1990).
- 15. G.R. Clark, A.J. Nielson, A.D. Rae and C.E.F. Rickard, J. Chem. Soc. Dalton Trans., 1783 (1994).
- 16. A. Mayr, C.M. Bastos, J. Am. Chem. Soc., 112, 7797 (1990).
- 17. A. Mayr, C.M. Bastos, R.T. Chang, J.X. Haberman, K.S. Robinson and D.A. Belle-Oudry, *Angew. Chem. Int. Ed. Engl.*, 31, 747 (1992).
- M. Al-Jahdali, P.K. Baker, A.J. Lavery, M.M. Meehan and D.J. Muldoon, J. Mol. Catal., 159, 5 (2001).
- 19. M. Al-Jahdali and P.K. Baker, J. Organomet. Chem., 628, 91 (2001).
- 20. M. Al-Jahdali, P.K. Baker and M.G.B. Drew, Z. Naturforsch, 54B, 171 (1999).
- 21. P.K. Baker, M.E. Harman, M.B. Hursthouse, A.J. Lavery, K.M.A. Malik, D.J. Muldoon and A. Shawcross, J. Organomet. Chem., 484, 189 (1994).
- M.G.B. Drew, P.K. Baker, D.J. Muldoon, A.J. Lavery and A. Shawcross, *Gazz. Chim. Ital.*, 126, 625 (1996).
- 23. J.L. Templeton and B.C. Ward, J. Am. Chem. Soc., 102, 3288 (1980).

(Received: 20 September 2003; Accepted: 23 December 2003) AJC-3316

13th INTERNATIONAL SYMPOSIUM ON SUPRAMOLECULAR CHEMISTRY

INDIANA, USA

JULY 25-30, 2004

Contact:

http://www.issc-xiii.org/

TETRAPYRROLES, CHEMISTRY AND BIOLOGY OF (GORDON RESEARCH CONFERENCE)

NEWPORT, RI, USA

JULY 25-30, 2004

Contact:

http://www.grc.uri.edu/04sched.htm