NOTE

X-ray Powder Diffraction of the Complex of $S_3N_3Cl_3$ with Zn(II) Compound

SHUBHA RANI and S.P. SINGH JADON*
Department of Chemistry, S.V. College, Aligarh-202 001, India
E-mail: ad-sp@yahoo.com

On the basis of X-ray powder diffractometric studies, the complex of $S_3N_3Cl_3$ with ZnO, formulated as $(S_3N_3Cl_3)_3$ ZnO is found to be a tridentate co-ordinate complex with distorted tetrahedral geometrical structure.

Key Words: Complex, S₃N₃Cl₃, Zn, XRD.

In $S_3N_3Cl_3$ all the sulphur, nitrogen and chlorine atoms have lone electron pairs in spare to donate electrons and to form coordinated complex. The polar and non-polar complexes of $S_3N_3Cl_3$ with some metals have been reported¹⁻⁵. In the present work, we describe the XRD of zinc(II) complex of $S_3N_3Cl_3$.

On the basis of the analytical data, molecular weight and its mass spectrum. the molecular composition of the complex of S₂N₂Cl₂ with ZnO has been reported⁶ as S₃N₃Cl₃)₃ZnO. The complex has also shown the paramagnetic character, which has been explained due to $4sp^3$ hybridisation in Zn^{2+} having distorted tetrahedral structure (loc. cit.). Further, to illustrate the structure of the complex, (S₃N₃Cl₃)₃ZnO, its XRD powder diffraction pattern, recorded in 20 range from 2-70°, is analyzed and it is found that the peak at 25.7° having 100% intensity is for ZnO while the triplet in a 20 range 28-31° is for S₂N₃Cl₃ ring which repeats in lower and higher 20 region, indicating the presence of other S₃N₃Cl₃ rings as expressed by its molecular formula. From the XRD pattern, the Miller indices 'hkl' and interplanar distance 'd' are calculated. The observed values of 'd' are in close resemblance to the theoretical ones (Table-1). The gradation in intensity ratio suggests the crystallinity of the complex. The average values of axial distance $a_0 = 8.0946 \text{ Å}$, $b_0 = 9.3427 \text{ Å}$ and $c_0 = 10.4508 \text{ Å}$ and axial angles $\alpha = +133.92^{\circ}$, $\beta = 72.75^{\circ}$ and $\gamma = 121.17^{\circ}$ also express the distorted tetrahedral structure of (S₃N₃Cl₃)₃ZnO as reported (loc. cit.), expounding the repulsion of S₃N₃Cl₃ rings from each other due to 4s² electron pairs of Zn²⁺ ion, present as non-bonding and having different planes than the (S₂N₃Cl₂)₃ZnO molecule packed in partial crystalline powder form. The axial ratios and axial angles (Table-2) determined from Table-1 for the molecular packing have six sets according to the atoms of S₂N₃Cl₃ ring, showing a triclinic packing of each (S₂N₃Cl₂)₃Zn²⁺ tetrahedral in space geometry in powder form. Thus the distorted tetrahedral structure of (S₃N₃Cl₃)₃ZnO is confirmed as reported (loc. cit.).

1976 Rani et al. Asian J, Chem.

TABLE-1
X-RAY PATTERN OF COMPLEX (S₃N₃Cl₃)₃ZnO

X-RAY PATTERN OF COMPLEX (S ₃ N ₃ Cl ₃) ₃ ZnO									
S.No.	20	Hrl	d (Å)	Obs. (Theoretical)	I/I ₀				
1.	10.8	100	8.1926	(8.1847)	52.93				
2.	17.1	110	5.1878	(5.1808)	60.77				
3.	18.8	111	4.7208	(4.7160)	38.22				
4.	20.5	200	4.3334	(4.3286)	83.80				
5.	23.1	210	3.8507	(3.8470)	49.50				
6.	25.7	211	3.4663	(3.4684)	100.00				
7.	27.2	211	3.2791	(3.2757)	47.00				
8.	28.7	211	3.1110	(3.1078)	59.79				
9.	29.4	220	3.0387	(3.0354)	81.84				
10.	30.0	220	2.9788	(2.9760)	82.33				
11.	31.5	220	2.8405	(2.8376)	57.34				
12.	32.2	300	2.7800	(2.7775)	44.10				
13.	34.0	310	2.6365	(2.6345)	38.71				
14.	35.8	310	2.5086	(2.5060)	31.85				
15.	36.5	311	2.4622	(2.4596)	31.85				
16.	37.8	222	2.3801	(2.3779)	27.93				
17.	39.0	222	2.3095	(2.3075)	46.06				
18.	41.8	320	2.1612	(2.1591)	44.10				
19.	43.5	400	2.0807	(2.0786)	30.38				
20.	46.2	410	1.9651	(1.9632)	29.40				
21.	48.9	411	1.8630	(1.8610)	33.32				
22.	51.7	331	1.7681	(1.7666)	27.44				
23.	52.5	332	1.7433	(1.7415)	33.81				
24.	56.0	422	1.6582	(1.6407)	30.87				
25.	59.2	500	1.5608	(1.5594)	24.99				
26.	61.0	511	1.5190	(1.5176)	24.50				
27.	. 63.2	520	1.4715	(1.4700)	24.50				

TABLE-2
AXIAL RATIOS AND AXIAL ANGLES OF THE COMPLEX (S₃N₃Cl₃)₃ZnO

S.No.	Axial ratios (Å)			Axial angles (°)		
	a ₀	b ₀	C0	α	β	γ
1.	7.3452	5.9967	4.8957	95.84	125.44	138.47
2.	15.9998	14.8125	13.7132	111.89	120.79	127.32
3.	33.2862	32.3554	31.4507	117.01	120.12	122.77
4.	24.5256	25.4996	26.5144	123.78	120.20	116.02
5.	39.0181	37.6676	36.3639	116.42	120.17	123.42
6.	39.6110	27.5305	19.1344	65.02	140.95	154.03

Doubly distilled Aldrich and AnalaR grade chemicals were used. S₄N₄ was prepared by Goehring's method⁷ by passing dry NH₃ gas into S₂Cl₂ dissolved in CCl₄ (1:10). S₃N₃Cl₃ (trithiazyl trichloride) was prepared by Nelson's method⁸ by chlorination of S₄N₄ in CS₂ kept in ice-bath for 6-8 h. The S₃N₃Cl₃ and ZnO were dissolved in DMF separately and were mixed in equimolar quantities to reflux the mixture for about 24 h. The colour changed to pale yellow which indicates the formation of complex. The product was separated, washed successively with DMF, ethanol and ether, dried and stored in a vacuum desiccator over fused CaCl₂.

XRD pattern of the complex was recorded on ISO Deveflux 2002 X-ray powder diffractometer (German) using Cu filament as source of radiation $(\lambda = 1.5418\text{Å}).$

ACKNOWLEDGEMENTS

We express our thanks to Director, IIT Kanpur and to the Principal, S.V. College, Aligarh for providing instrumental and library facilities during the present work.

REFERENCES

- 1. R.L. Patton and W.L. Jolley, *Inorg. Chem.*, **9**, 1079 (1979).
- 2. W. Kenneth, J. Inorg. Nucl. Chem., 30, 2851 (1968).
- 3. S.P.S. Jadon, Bangladesh Acad. Sci., 24, 135 (2000).
- 4. ——, Asian J. Chem., 12, 1139 (2000).
- 5. A. Agrawal and S.P.S. Jadon, Asian J. Chem., 13, 1525 (2001).
- 6. S. Rani and S.P.S. Jadon, J. Indian Chem. Soc., 81, 61 (2004).
- 7. M.B. Goehring, Inorganic Synthesis, McGraw-Hill, New York (1960); Quart. Rev., 10, 437 (1956).
- 8. J. Nelson and H.G. Heal, *Inorg. Nucl. Chem. Lett.*, **6**, 429 (1970).

(Received: 7 April 2004; Accepted: 10 June 2004)

AJC-3486

FOURTH NATIONAL CONVENTION **CHEMISTRY TEACHERS**

(NCCT-2004)

30-31st OCTOBER 2004

For details contact:

Dr D.V. Prabhu

Dr Narottam Sahoo

General Secretary, IACT

(Co-Convenor)

Head, Department of Chemistry

Executive Scientist, Gujarat Council of Science City

Wilson College

DST, Government of Gujarat

Mumbai-400 007

Sola-Santej Road, Ahmedabad-380 381

Tel. (Off.) 022-23637663

Fax 079-3244849

(Res.) 022-28811497

Tel. 079-3244875-76; E-mail: mail@scity.com;

Web: http://www.scity.org