Kinetic Studies on Thermal Decomposition of Oxalates Doped with Malonate

M.P. SURYANARAYANAN

Department of Chemistry Government Victoria College, Palakkad-678 001, India E-mail: suryanaji@ethnet.net

Thermal decomposition of metal oxalates is one of the important methods of preparation of pure or mixed metal oxides having special properties. Cationic or anionic doping may affect their decomposition. Here, the effect of doping by malonate ion on the thermal decomposition of oxalates of lead, zinc, manganese, nickel and cobalt was studied. The pure oxalates were prepared by treating a hot solution of salt of the metal with a hot solution of sodium oxalate. The doped samples of the above oxalates were prepared by taking a mixture of sodium oxalate and sodium malonate for precipitation. The decomposition was followed by thermogravimetric method The kinetic parameters like energy of activation (E), frequency factor (Z) and entropy of activation (ΔS^*) of cobalt oxalate and nickel oxalate decreased considerably whereas the values for oxalates of lead, zinc and manganese increased on doping. The temperature at which the decomposition began (T_i) and temperature of completion (T_f) decreased whereas temperature of maximum decomposition (T_s) increased for cobalt oxalate and remained constant for nickel oxalate. In the case of lead oxalate doping with malonate ion increased T_i, but no appreciable change was observed for T_f and T_s. For zinc oxalate and manganese oxalate T_i, T_f and T_s remained practically constant.

Key Words: Thermal decomposition, Oxalates, Malonate, Kinetic parameters.

INTRODUCTION

The thermal decomposition of solids is influenced by many factors like irradiation by high-energy radiation, doping, etc. Considerable volume of work has been done or the thermal decomposition of pure and mixed oxalates. The effect of doping in this process is also a subject matter of study¹⁻⁴. The decomposition of metal oxalates, coprecipitated oxalates, oxalato complexes assumes importance because this is a common method for the preparation of oxides, pure or mixed, which are having special properties like magnetic, piezoelectric and ceramic properties. Here the effect of doping with malonate ion on kinetics of thermal decomposition of oxalates of lead, zinc, manganese, nickel and cobalt was studied.

EXPERIMENTAL

The pure oxalates were prepared by treating a hot solution of lead nitrate, zinc sulphate, manganese sulphate, nickel sulphate or cobalt nitrate with a hot solution of sodium oxalate. The precipitated oxalates were filtered, washed with water and dried. The doped samples of the above oxalates were prepared by taking a mixture of sodium oxalate and sodium malonate for precipitation⁵. The dopant concentration was fixed as 1%.

The oxalates were sieved and samples in the range of 90–106 micron were collected. Non-isothermal TGs were taken by using Shimadzu thermal analyzer in nitrogen atmosphere with heating rate 5 K min⁻¹. In each case 10 mg of the sample was taken. The composition and purity were established by chemical analysis and from the mass loss noted in the TG.

RESULTS AND DISCUSSION

Lead oxalate decomposes in a single stage and all others, being hydrated, in two stages as given below:

$$PbC_{2}O_{4} \longrightarrow PbO + CO_{2} + CO$$

$$ZnC_{2}O_{4} \cdot 2H_{2}O \longrightarrow ZnC_{2}O_{4} + 2H_{2}O$$

$$ZnC_{2}O_{4} \longrightarrow ZnO + CO_{2} + CO$$

$$MnC_{2}O_{4} \cdot 2H_{2}O \longrightarrow MnC_{2}O_{4} + 2H_{2}O$$

$$MnC_{2}O_{4} \longrightarrow MnO + CO_{2} + CO$$

$$NiC_{2}O_{4} \cdot 2H_{2}O \longrightarrow NiC_{2}O_{4} + 2H_{2}O$$

$$NiC_{2}O_{4} \longrightarrow NiO + CO_{2} + CO$$

$$CoC_{2}O_{4} \cdot 2H_{2}O \longrightarrow CoC_{2}O_{4} + 2H_{2}O$$

$$CoC_{2}O_{4} \cdots \longrightarrow CoO + CO_{2} + CO$$

The kinetics of decomposition of oxalates to metal oxide, CO_2 and CO was studied here. The kinetic parameters like energy of activation (E), frequency factor (Z) and entropy of activation (ΔS^*) were calculated by using Coats-Redfern⁶ and Freeman-Carroll⁷ methods.

The Coats-Redfern method

According to this method,

$$\log \left[\{1 - (1 - \alpha)^{1-n}\} / \{(1 - n)T^2\} \right] = \log \left[\{ZR/\phi E\} \{(1 - 2RT/E)\} \right] - E/2.303RT$$
 for $n \neq 1$

and

$$\log \left[- \{ \log(1-\alpha) \} / T^2 \right] = \log \left[\{ ZR/\varphi E \} \{ (1-2RT/E) \} \right] - E/2.303RT \quad \text{for } n=1$$

Here, α is the fraction of reactant decomposed, T temperature in Kelvin, Z frequency factor, E energy of activation, R gas constant ϕ heating rate and n the

Vol. 16, Nos. 3-4 (2004)

order of the reaction. The quantity $\log \{\{ZR/\phi E\}\{(1-2RT/E)\}\}\$ is practically a constant. Therefore, plots of

$$\log \left[\{1 - (1 - \alpha)^{1-n}\} / \{(1-n)T^2\} \right] vs. 1/T$$
 for $n \neq 1$

and

$$\log \left[-\log \left(1 - \alpha\right)/T^2\right] vs. 1/T \qquad \text{for } n = 1$$

results in a straight line for correctly chosen values of n. Least square linear regression method was used. The order of the reaction is found to be one. The E and Z were calculated from the slope and intercept respectively.

The entropy of activation ΔS^* is given by

$$\Delta S^* = [\log Z - \log (kT_s/h)]2.303R$$

where T_s is the temperature of maximum decomposition. The values obtained are given in Table-1.

Sample	T_{i}	$T_{\mathbf{f}}$	T_{s}	E (kJ mol ⁻¹)	Z (min ⁻¹)	$\Delta S* (J K^{-1} mol^{-1})$
Lead oxalate	565	653	644	309.8	2.9×10^{40}	523.4
Lead oxalate + M	583	653	641	335.2	1.9×10^{45}	615.6
Zinc oxalate	442	680	668	256.8	2.2×10^{30}	329.2
Zinc oxalate + M	445	680	668	282.4	3.0×10^{34}	408.4
Manganese oxalate	427	590	559	161.0	7.8×10^{19}	130.6
Manganese oxalate + M	427	593	577	177.3	2.0×10^{22}	176.6
Nickel oxalate	563	632	614	307.0	1.0×10^{42}	553.5
Nickel oxalate + M	536	623	614	209.8	1.8×10^{25}	232.5
Cobalt oxalate	481	562	544	233.8	8.9×10^{34}	419.2
Cobalt oxalate + M	478	559	553	188.3	3.2×10^{25}	238.1

TABLE-1 COATS-REDFERN METHOD

The Freeman-Carroll method

This method, for first order reaction, gives the relation

$$\log [(dw/dt)/W_r] = -E/2.303RT + \log Z$$

Here, $W_r = (W_{\alpha} - W) \cdot W_{\alpha}$ is the mass loss at the completion of the reaction and W the mass loss up to time t. The temperature slope dw/dT is converted into time slope dw/dt by using the relation

$$dw/dt = (dw/dT)(dT/dt) = (dw/dT)\phi$$

where ϕ is the heating rate.

Thus, a plot of $\log \left[\frac{dw}{dt} \right] vs. 1/T$ is a straight line with slope -E/2.303R and intercept $\log Z \cdot \Delta S^*$ is calculated by the relation,

$$\Delta S^* = [\log Z - \log (kT_s/h)]2.303R$$

The E, Z and ΔS^* obtained by this method are given in Table-2.

Sample	Ti	T _f	Ts	E (kJ mol ')	Z (min ')	$\Delta S* (J K^{-1} mol^{-1})$
Lead oxalate	565	653	644	401.8	2.4×10^{32}	368.7
Lead oxalate + M	583	653	641	462.4	6.8×10^{37}	473.1
Zinc oxalate	442	680	668	297.4	5.2×10^{22}	183.2
Zinc oxalate + M	445	680	668	299.4	7.5×10^{22}	186.3
Manganese oxalate	427	590	559	232.1	1.2×10^{21}	153.1
Manganese oxalate + M	427	593	577	256.8	1.1×10^{23}	191.0
Nickel oxalate	563	632	614	398.3	2.1×10^{33}	386.9
Nickel oxalate + M	536	623	614	321.5	4.9×10^{26}	260.1
Cobalt oxalate	481	562	544	270.2	2.4×10^{25}	235.8
Cobalt oxalate + M	478	559	553	238.0	1.2×10^{22}	172.4

TABLE-2 FREEMAN-CAROLL METHOD

M = doped with malonate

Doping with cation having different valency may alter the concentration of point defects and affect the decomposition kinetics as well as mechanism. The size of the dopant ion is also an important factor since it may distort the lattice. Many studies have been conducted in this field. These factors may also have influence in the case of anionic doping. Some studies have been done in this field also, which showed that anionic doping decreasesd activation energy² (E).

Here in the case of lead oxalate doping with malonate ion slightly increases the temperature at which the decomposition began (T_i) , no appreciable change in temperature of completion (T_f) and temperature of maximum decomposition (T_s) . The energy of activation (E) and entropy of activation (ΔS^*) also increases slightly. For zinc oxalate T_i , T_f and T_s remain constant, whereas E and ΔS^* increase slightly. Manganese oxalate follows the same pattern, except that T_s shows an increase.

The decomposition of cobalt oxalate and nickel oxalate proceeded with a considerable decrease in the energy of activation (E) and entropy of activation (ΔS^*). For cobalt oxalate E decreases from 233.8 to 188.3 kJ mol⁻¹ and ΔS^* from 419.2 to 238.1 J K⁻¹ mol⁻¹. In the case of nickel oxalate E changes from 307.0 to 209.8 kJ mol⁻¹ and ΔS^* from 553.5 to 232.5 J K⁻¹ mol⁻¹. T_i and T_f decrease whereas T_s increases for cobalt oxalate and remains constant for nickel oxalate. The values quoted are from Coats-Redfern method. The values obtained by Freeman-Caroll method also follow the same trend.

Thus, malonate doping has influence on the thermal decomposition of metal oxalates in certain cases. Since the size of malonate ion is bigger than oxalate ion it may bring about strain in the crystal lattice which may be the probable reason for the decrease in the E and ΔS^* values of cobalt oxalate and nickel oxalate. The size of the cation may be another influencing factor. The Pauling ionic radii of different cations in Å units are: Pb²⁺, 1.21; Mn²⁺, 0.80; Zn²⁺, 0.74; Co²⁺, 0.74; Ni²⁺, 0.69. This effect may be used in altering the decomposition pattern of these compounds used in the preparation of oxides, pure or mixed, which are having

magnetic, piezoelectric and ceramic properties. It may be noted that doping with malonate will not affect the composition of the final product whereas it may sometimes bring about desirable changes in the properties of the product oxides.

Mechanism

The method suggested by Sestak and Berggren⁸ and Satava⁹ has been used for determining the mechanism of thermal decomposition. For correct mechanism the plot of $\log g(\alpha)$ vs. 1/T should be a straight line. The different possible mechanisms and the corresponding $g(\alpha)$ functions are given in Table-3.

TABLE-3

Function	Equation $g(\alpha) = kt$	Rate controlling process			
D ₁	$\alpha^2 = kt$	One-dimensional diffusion (parabolic law)			
D_2	$(1-\alpha)\ln(1-\alpha) + \alpha = kt$	Two-dimensional diffusion, cylindrical symmetry			
D ₃	$[1 - (1 - \alpha)^{1/3}]^2 = kt$	Three-dimensional diffusion, spherical symmetry (Jander equation)			
D ₄	$(1-2/3\alpha) - (1-\alpha)^{2/3} = kt$	Three-dimensional diffusion, spherical symmetry (Ginstiling Brownstein equation)			
F ₁	$-\ln\left(1-\alpha\right)=kt$	Random nucleation; one nucleus on each particle (Mampel equation)			
A ₂	$[-\ln{(1-\alpha)}]^{1/2} = kt$	Random nucleation (Avrami equation I)			
$A_3 [-\ln (1-\alpha)]^{1/3} = kt$		Random nucleation (Avrami equation II)			
$R_2 1 - (1 - \alpha)^{1/2} = kt$		Phase boundary reaction; cylindrical symmetry			
$R_3 1 - (1 - \alpha)^{1/3} = kt$		Phase boundary reaction; spherical symmetry			

TABLE-4

Sample	Mechanism	E (kJ mol ⁻¹) [Mechanistic equation]	E (kJ mol ⁻¹) [Coats-Redfern method]	
Lead oxalate	R ₃	308.3	309.8	
Lead oxalate + M	R ₃	320.5	335.2	
Zinc oxalate	F_1	269.4	256.8	
Zinc oxalate + M	F_1	295.2	282.4	
Manganese oxalate	R ₃	157.5	161.0	
Manganese oxalate + M	R ₃	176.0	177.3	
Nickel oxalate	R ₃	295.3	307.0	
Nickel oxalate + M	R_3	209.6	209.8	
Cobalt oxalate	R ₃	228.8	233.8	
Cobalt oxalate + M	R_{3}	188.7	188.3	

The least square linear regression method was used to arrive at the best linear fit. The mechanistic equation corresponding to maximum correlation coefficient gives correct mechanism. For nearly the same value of correlation coefficient the operating mechanism is chosen by comparing the E values, calculated by the mechanistic equation, with those obtained by the non-mechanistic method, *viz.*, Coats-Redfern and Freeman-Carroll methods. For calculating E by mechanistic method MacCallum-Tanner equation was used ¹⁰. The results are given in Table-4.

The mechanism of decomposition was found to be R_3 , *i.e.*, phase boundary reaction with spherical symmetry except in the case of zinc oxalate for which the mechanism was F_1 , *i.e.*, random nucleation with one nucleus on each particle. Further doping did not change the mechanism.

Conclusion

The anionic doping of metal oxalate decreased the kinetic parameters like energy of activation (E), frequency factor (Z) and entropy of activation (ΔS^*) of cobalt oxalate and nickel oxalate whereas it increased the values for oxalates of lead, zinc and manganese. The temperature at which the decomposition begins (T_i) and temperature of completion (T_f) decreased for cobalt oxalate and nickel oxalate whereas temperature of maximum decomposition (T_s) increased for cobalt oxalate and remained constant for nickel oxalate. In the case of lead oxalate doping with malonate ion increased T_i , no appreciable change was observed in T_f and T_s . For zinc oxalate and manganese oxalate T_i , T_f and T_s remained practically constant. Thus, anionic doping has influence on the thermal decomposition of metal oxalates in certain cases. This effect may be used in altering the decomposition pattern of these compounds used in the preparation of oxides, pure or mixed, which are having special properties. The composition of the final product oxide is not changed by anion doping.

ACKNOWLEDGEMENT

This work was supported by Kerala State Council for Science, Technology and Environment (KSCSTE), formerly known as Science, Technology and Environment Committee (STEC) by awarding research grant.

REFERENCES

- 1. D. Dollimore, Thermochim. Acta, 194, 215 (1992).
- 2. Y.H. Lee and Y.S. Wu, J. Alloys Comp., 193, 79 (1993).
- 3. P.K. Gallagher, P.T. Chao, L. Zhong and J. Subramanian, J. Thermal Anal., 39, 975 (1993).
- 4. A.M. Donia, Polyhedron, 16, 3013 (1997).
- 5. M.A. Mohamed, A.K. Galwey and S.A. Halawy, Thermochim. Acta, 346, 92 (2000).
- 6. A.W. Coats and J.P. Redfern, Nature (London), 201, 68 (1964).
- 7. E.S. Freeman and B. Carroll, J. Phys. Chem., 62, 394 (1958).
- 8. Sestak and G. Bergren, Thermochim. Acta, 3, 498 (1972).
- 9. V. Satava, Thermochim. Acta, 2, 423 (1971).
- 10. J.R. MacCallum and J. Tanner, Eur. Polym. J., 6, 1033 (1970).