## NOTE

## X-Ray Diffraction Pattern of the Complex of Heptasulfaimide with Sn(IV)

U.K. TRIPATHI and S.P.S. JADON\*

Department of Chemistry, S.V. College, Aligarh-202 001, India

E-mail: ad\_sp@yahoo.com

On refluxing  $SnI_4$  with  $S_7NH$ ,  $Sn^{4+}$  is reduced to  $Sn^{2+}$  with the formation of  $(S_7N)_2 \cdot SnI_2$  as confirmed by its mass and IR spectra. The values of axial ratios and axial angles determined from its XRD pattern suggest monoclinic packing of its unit lattice.

Key Words: X-Ray diffraction, Heptasulfaimide, Sn(IV).

Ionic as well as coordinated compounds of S<sub>7</sub>NH with organic and metallic salts have been reported<sup>1, 9</sup>, suggesting the linkage of S<sub>7</sub>NH through its S and N atoms with sulfur bridging in the complex.

Quantitative estimations, m.w.  $(848.5 \text{ g mol}^{-1})$  and fragments  $S_4$ — $SnI_2$ — $S_7N$  and  $NS_6$ — $SnI_2$ — $S_7N$  at m/z 738 and 818 found in its mass spectrum, infer its m.f. as  $(S_7N)_2$ · $SnI_7$ , explaining that  $S_7NH$  has reduced  $SnI_4$  during the reaction as follows:

$$2S_7NH + SnI_4 \longrightarrow (S_7N)_2 \cdot SnI_2 + 2HI$$

This ionic displacement is also confirmed by carrying out the reaction in ethanol. The vibrations at 484 (b, w), 513 (b) cm<sup>-1</sup>, for two S—S  $\rightarrow$  Sn; 650–750 (b), 966 (b) cm<sup>-1</sup> for two S—S  $\rightarrow$  Sn and in higher region for N—S bands, observed in its IR spectrum, indicate quadridentative linkage of S<sub>7</sub>N group to Sn atom, forming O<sub>h</sub> complex. The O<sub>h</sub> geometry is supported by the values of oscillator strength 'f' of the order of  $10^{-4}$  for spin-allowed Laporte forbidden transition with  $T_d \rightarrow$  O<sub>h</sub> symmetry <sup>10</sup> as shown by its proposed structure, (Fig. 1).



Fig. 1

From XRD pattern of the complex recorded in  $2\theta$  range from 5 to  $50^{\circ}$  (Table-1)  $\sin^2\theta$ , hkl and 'd' are calculated. The values of 'd' observed resemble the theoretical ones, upholding the previous discussion about the structure of the complex. The values of axial ratios:  $a_0 = 11.3247$  Å,  $b_0 = 9.2456$  Å and  $c_0 = 5.6614$  Å; axial angles:  $\alpha = 83.97^{\circ}$ ,  $\beta = 25.54^{\circ}$  and  $\gamma = 150.03^{\circ}$  determined from its XRD spectrum, are according to  $a_0 \neq b_0 \neq c_0$  and  $\alpha \neq \beta \neq \gamma$  for triclinic geometry of unit cell as expressed by Fig. 1.

TABLE-1 XRD PATTERN OF THE COMPLEX (S<sub>7</sub>N)<sub>2</sub>·SnI<sub>2</sub>

| S.No. | 2θ<br>(°) | sin <sup>2</sup> θ | hkl | 'd' (Å) |           |
|-------|-----------|--------------------|-----|---------|-----------|
|       |           |                    |     | Observ. | (Theor.)  |
| 1.    | 7.80      | 0.0046             | 100 | 11.3247 | (11.3256) |
| 2.    | 11.40     | 0.0098             | 110 | 7.7550  | (7.7555)  |
| 3.    | 13.60     | 0.0140             | 111 | 6.5053  | (6.5053)  |
| 4.    | 15.60     | 0.0184             | 200 | 5.6773  | (5.6755)  |
| 5.    | 19.20     | 0.0278             | 211 | 4.6202  | (4.6187)  |
| 6.    | 22.20     | 0.0371             | 220 | 4.0021  | (4.0008)  |
| 7.    | 23.58     | 0.0417             | 300 | 3.7710  | (3.7697)  |
| 8.    | 25.02     | 0.0469             | 310 | 3.4885  | (3.5559)  |
| 9.    | 26.12     | 0.0511             | 311 | 3.4097  | (3.4086)  |
| 10.   | 28.40     | 0.0602             | 320 | 3.1410  | (3.1400)  |
| 11.   | 33.50     | 0.0830             | 411 | 2.6735  | (2.6726)  |
| 12.   | 39.80     | 0.1159             | 500 | 2.2636  | (2.2629)  |
| 13.   | 42.99     | 0.1343             | 520 | 2.1023  | (2.1021)  |
| 14.   | 43.80     | 0.1391             | 521 | 2.0656  | (2.0651)  |
| 15.   | 46.06     | 0.1530             | 532 | 1.9695  | (1.9689)  |
| 16.   | 49.58     | 0.1759             | 620 | 1.8376  | (1.8369)  |

Doubly distilled, Aldrich make chemicals of AnalaR grade were used.  $S_7NH$  was recovered as a byproduct from ether extract during the synthesis of  $S_4N_4$ . To get better yield, dry  $NH_3$  was passed in excess after the appearence of solomon red colour of  $S_4N_4$  formed in  $CCl_4$ . The equimolar mixture of  $S_7NH$  and  $SnI_4$ , dissolved in DMF separately, was refluxed for 24 h at 150°C. The brown coloured product obtained, was separated, washed with DMF followed by ethanol and ether, dried and stored *in vacuo* over fused  $CaCl_2$ .

The quantitative estimations for constituent elements were done as described  $^{12}$ . Mass, IR and XRD spectra of the complex were graphed subsequently on Jeol SX-102 (FAB), Shimadzu 8201 PC spectrometers from CDRI Lucknow and Philips Model No. PW 1130/00 x-ray diffractometer using CuK<sub>A</sub> as source of radiation ( $\lambda = 1.5410$  Å) from IIT Kanpur.

## **ACKNOWLEDGEMENTS**

Authors express their thanks to the Director, CDR, Lucknow and Chairman, Deptt. of Chemistry, IIT Kanpur for providing instrumental facilities and critical suggestions.

## REFERENCES

- 1. C. Dommingo and J.M. Orza, Spectrochim. Acta, 34A, 1033 (1978).
- 2. H.G. Fernanadez, H. Coudame and M.A. Pindit, Phosphorus, Sulfur, Silicon Relat. Elem., 41, 405 (1986).
- 3. C.C. Wang, Y.Y. Hong, H.U. Chun and Y. Hong, Inorg. Chim. Acta, 23, 3331 (1992).
- 4. H.G. Fernandez, G. Madelenin and R. Freymann, C.R. Scandes Acad. Sci. Ser., 292, 1393 (1981); 296, 61 (1983).
- 5. T. Chivers and M. Hojo, *Inorg. Chem.*, 23, 2738 (1984).
- 6. J. Ray, Inorg. Chim. Acta, 6, 2165 (1987).
- 7. J. Weiss, Angew. Chem., 532, 184 (1986); 542, 137 (1986).
- 8. K.K. Pandey, M. Mossoudipour, T. Dileep and S.K. Tiwari, Polyhedron, 800, 1447 (1989); Inorg. Chim. Acta, 182, 163 (1991).
- 9. K. Bergemann, M. Kustos, P. Krueger and R. Steudil, Angew. Chem., 34, 1330 (1995).
- 10. B.N. Figgs, Introduction to Ligand Fields, Wiley Eastern, New-Delhi (1974).
- 11. M.B. Goehring and W.L. Jolly, *Inorg. Chem.*, 1, 76 (1962).
- 12. A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, Longmans (1967).

(Received: 4 March 2004; Accepted: 10 June 2004)

AJC-3482