Synthesis of the Complexes of S₃N₃Cl₃ with Cadmium(II) and Mercury(II) ## SHUBHA RANI and S.P.S. JADON* Department of Chemistry S.V. College, Aligarh-202 001, India E-mail: ad_sp@yahoo.com Complexes of trithiazyl trichloride, S₃N₃Cl₃, with Cd(CH₃COO)₂ and HgCl₂ were synthesized and analyzed. On the basis of its IR and X-ray powder spectra, it is revealed that both the complexes have tetragonal geometry. The antibacterial and toxic effect of these complexes on the albino rats was also tested. Key Words: Synthesis, Trithiazyl trichloride, Complexes, Cadmium(II), Mercury(II). #### INTRODUCTION The complexes of trithiazyl trichloride (TTTCl), $S_3N_3Cl_3$ with Al(II), Mo(VI), Cu(II), Th(IV) and Zr(IV) have been reported¹⁻⁵. In continuation of our previous work⁶, X-ray diffraction studies of the complexes of $S_3N_3Cl_3$ with Cd(II) and Hg(II) are being presented. # RESULTS AND DISCUSSION On the basis of alalytical analysis, m.w. determination and mass spectra, the complexes of TTTCl, synthesised with Cd(II) and Hg(II), have been formulated as $(S_3N_3Cl_3)_4$ Cd(CH₃COO)₂ and S_3N_3 Cl₃·HgCl₂ respectively. The IR spectra (Table-1) of the complexes possess two N—S \rightarrow Cd and two S—N \rightarrow Cd bands in $(S_3N_3Cl_3)_4$ ·Cd(CH₃COO)₂ and only two S—N \rightarrow Hg bands in S_3N_3 Cl₃·HgCl₂ inferring the quadridentated and bidentated linkage of S_3N_3 Cl₃ to Cd(CH₃COO)₂ and HgCl₂ respectively. To elucidate the geometrical structure of the complexes, from their X-ray diffraction spectra (Table-2), recorded in 2θ range (10–70°), unit cell parameters, 'hkl' and 'd' were calculated. The values of 'd' observed resembles with the theoretical ones inferring its structure. The axial ratios, a_0 , b_0 and c_0 , were determined as: $$\frac{a_0}{b_0} = \frac{\sin \phi_1}{\sin \phi_2}, \quad \frac{c_0}{a_0} = \frac{\sin \phi_3}{\sin \phi_4}$$ 1894 Rani et al. Asian J. Chem. TABLE-1 IR SPECTRAL DATA OF THE COMPLEXES | TTTCI·Cd | (CH ₃ COO) ₂ | TTTCl.HgCl ₂ | | | |----------|------------------------------------|-------------------------|-------------|--| | Bands | Assignments | Bands | Assignments | | | 410 s | S—Cl | 408 | S—Cl | | | 449 b | N—S→M | 5557 | Hg—Cl | | | 513 s | S—CI | 632 | S—N→M | | | 557 wb | N—S→M | 671 | S—N→M | | | 615 b | S—N→M | | | | | 673 b | S—N→M | | | | | 715 s | S—N ring | 736 s | S—N ring | | | | | 1043 s | N—S—C1 | | | 1109 s | N—S—Cl | 1103 s | N—S—CI | | | 1155 s | N—S—CI | 1157 | N—S—Cl | | | 1314 | N—S—CI | 1300 | N—S—CI | | | 1407 ws | N—S—Cl | 1400 | N—S—CI | | | 1571 b | CH ₃ COO ⁻ | | | | The values $a_0 = b_0 = 7.5771$, $c_0 = 4.7254$ and $\alpha = \beta = 113.07^\circ$ and $\gamma = 96.3^\circ$ are according to tetragonal geometrical array of both the complexes. Both the complexes are found to be active against all bacteria, except *E. coli*, when they were treated on the *S. albus, S. aureus* (gram +ve), *B. pulminas* and *E. coli* (gram -ve) bacteria. Toxicity of the complexes was tested on albino rats by using 0.1 mL of test solution (5 mg/mL)/kg wt. and the complexes are found to be toxic in nature (Table-3). #### **EXPERIMENTAL** AnalaR grade chemicals were used throughout the present work. TTTCl was synthesized³ by chlorination of S_4N_4 ⁸ dissolved in CS_2 kept at 0°C. The resulting blue solid, $S_3N_3Cl_3$ (500 mg) was mixed with 500 mg of $Cd(CH_3COO)_2$ and $HgCl_2$ in DMF separately and refluxed for 24 h. The resultant solids were separated, washed successively with DMF, ethanol and ether, dried and stored in vacuum desiccator over fused $CaCl_2$. TABLE-2 XRD PATTERN OF THE COMPLEXES | S.No. | TTTCl·Cd(CH ₃ COO) ₂ | | | TTTCl·HgCl ₂ | | | |-------|--|-----|---------------------|-------------------------|-----|--------------------| | | 2θ (°) | hkl | d(Å) obs.
(cal.) | 2θ (°) | hkl | d(Å)
obs.(cal) | | 1. | 12.0 | 100 | 7.3749
(7.3688) | 10.6 | 100 | 8.3431
(8.3387) | | 2. | 15.4 | 110 | 5.7572
(5.7487) | 15.3 | 110 | 5.7919
(5.7861) | | 3. | 20.5 | 111 | 4.3328
(4.3286) | 17.0 | 111 | 5.2158
(5.2111) | | 4. | 25.4 | 200 | 3.5070
(3.5038) | 20.5 | 200 | 4.3328
(4.3286) | | 5. | 27.0 | 210 | 3.3027
(3.2995) | 25.5 | 210 | 3.4935
(3.4992) | | 6. | 29.9 | 211 | 2.9887
(2.9857) | 26.3 | 211 | 3.3515
(3.3857) | | 7. | 33.9 | 220 | 2.6446
(2.6420) | 29.7 | 220 | 3.0083
(3.0054) | | 8. | 36.4 | 300 | 2.3444
(2.4461) | 31.2 | 300 | 2.8670
(2.8642) | | 9. | 39.1 | 310 | 2.3040
(2.3018) | 35.6 | 311 | 2.5221
(2.5197) | | 10. | 41.3 | 311 | 2.1863
(2.1842) | 38.8 | 320 | 2.3212
(2.3189) | | 11. | 44.0 | 320 | 2.0582
(2.0562) | 43.7 | 400 | 2.0716
(2.0690) | | 12. | 48.8 | 400 | 1.8664
(1.8645) | 51.4 | 421 | 1.7779
(1.7767) | | 13. | 52.4 | 411 | 1.7463
(1.7446) | 54.4 | 422 | 1.6867
(1.6852) | TABLE-3 TOXIC AND ANTIBACTERIAL TEST OF THE COMPLEXES | | gram +ve Bacteria | | gram -ve Bacteria | | Toxicity | | |--|-------------------|-----------|-------------------|---------|----------|---------------------| | Complexes | S. Albus | S. Aureus | B.
pulminas | E. coli | doses | Inference | | TTTCl·Cd(CH ₃ COO) ₂ | +2.16 | +1.74 | +2.72 | | 0.1 mL | Expired after 1 min | | | +2.10 | +1.70 | +2.70 | | 0.2 mL | Expired after 30 s | | TTTCl·HgCl ₂ | +2.60 | +2.60 | +1.85 | | 0.1 mL | Expired at once | | | +2.65 | +2.65 | +1.80 | | 0.2 mL | Expired at once | 1896 Rani et al. Asian J. Chem. The IR and X-ray diffraction spectra of the complexes were recorded subsequently on 820/P.C. (KBr) and ISO Deveflux 2002 X-ray powder diffractometer, using Cu filment as source of radiation ($\lambda = 1.5418 \text{ Å}$). ### ACKNOWLEDGEMENT The authors are thankful to the Director, CDRI, Lucknow and Chairman, I.C. IIT Kanpur for providing facilities to us. # REFERENCES - 1. R.L. Patton and W.L. Jolly, Inorg. Chem., 9, 1079 (1979). - 2. W. Kenneth, J. Inorg. Nucl. Chem., 24, 135 (1968). - 3. S.P.S. Jadon, J. Bangladesh Acad. Sci., 24, 135 (2000). - 4. ----, Asian J. Chem., 12, 1139 (2000). - 5. A. Agrawal and S.P.S. Jadon, Asian J. Chem., 13, 1525 (2001). - 6. S. Rani and S.P.S. Jadon, Asian J. Chem., 16, 1942, 1975 (2004). - 7. J. Nelson and H.G. Heal, Inorg. Nucl. Chem. Lett., 6, 429 (1970). - 8. M.B. Geohring, Quart. Rev., 10, 437 (1956). (Received: 7 April 2004; Accepted: 10 June 2004) AJC-3460