NOTE

X-Ray Diffraction Pattern of the Complex of 1,3,5-Hexachlorocyclotriphosphazene with Cobalt(II) Acetate

S.P.S. JADON

Department of Chemistry, S.V. College, Aligarh-202 001, India E-mail: sps_jadon@yahoo.co.in

X-ray powder diffraction spectrum of the complex of 1,3,5-hexachlorocyclotriphosphazene with CoAc₂, assigned as (PNCl₂)₂·CoAc₂ quantitatively, suggested its Co²⁺ bridged hexadentated sandwich structure.

Key Words: X-ray diffraction, Co(II) acetate.

A few N-coordinated complexes of 1,3,5-hexachlorocyclotriphosphazene with some metal compounds have been reported¹⁻⁹. X-ray powder diffraction studies of the complex of HCTP with CoAc₂ are being presented.

HCTP was synthesized as reported¹⁰, using Aldrich make AnalaR grade chemicals. To prepare the complex ethanolic solutions of both HCTP and CoAc₂ were mixed together and refluxed for 24 h till violet coloured mass was formed. The obtained product was washed with ethanol and diethyl ether successively, dried and stored *in vacuo*.

Quantitative analysis of the complex was done gravimetrically 11 and from its atomic absorption spectrum, recorded on ESCA-750 (100–900 nm). IR, electronic and XRD spectra were carried out, subsequently, on the Perkin-Elmer 785 (4000–200 cm $^{-1}$), UV-260, Shimadzu (800–2000 nm) and PW-1130100 diffractometer using CuK $_{\alpha}$ (λ = 1.540 Å) in 1–55°C, 20 range at room temperature.

Analytical data of the complex of HCTP with $CoAc_2$ for the molecular composition (PNCl₂)₂·CoAc₂ % found (calcd.), P 21.20 (21.30), N 9.67 (9.60), Cl 48.60 (48.75), C 5.70 (5.50), H 0.60 (0.69), Co 6.60 (6.75) and m.w. 876.74 (873.0) g mol⁻¹ are in close agreement the values obtained from atomic absorption spectrum of the complex.

The vibrations at 260 (d) cm⁻¹ for P—N \rightarrow Co: 295–300 (bd) cm⁻¹ for two P—N \rightarrow Co, 385 and 520 cm⁻¹ due to P—Cl, 660 (s), 690–746 (b) and 825 cm⁻¹ for P \rightleftharpoons N ring, 1060–1160 cm⁻¹ for N—P—Cl and 1360–1700 cm⁻¹ due to CH₃COO⁻ ions are observed in the IR spectrum of the complex, indicating hexadentated coordination of two PNCl₂ molecules with one CoAc₂ mol.

UV spectrum of the complex consists five bands, one at 810 nm (12345.70 cm⁻¹) for the charge transfer transition, while peaks at 1000 and 1460 nm are due to $^4T_{1g}(F) \rightarrow ^4T_{2g}(F)$ and $^4T_{1g}(F) \rightarrow ^4T_{1g}(P)$ transitions inferring O_h geometry of Co²⁺ complexes. The remaining bands at 1680 and 1900 nm are on account of σ and π bonds at P—N ring of 1,3,5-hexachlorocyclotriphosphazene. The O_h geometry is also confirmed by low value of magnetic moment $\mu_{eff}=1.498$ BM, which is too much lower than 2–3.5 for O_h cobalt complexes. The values of frequency ratio $v_1/v_2 < 1$, oscillator strength 'f' of the order 10^{-7} for spin-forbid-den-Laporte-forbidden transition and spin-orbital coupling constant, $(\lambda_s=140.7~\text{cm}^{-1}$ low from free Co²⁺ ion), determined by the equation as:

$$\mu_{\text{eff}} = 3.89 - \frac{15.59\lambda_{\text{s}}}{\Delta_0}$$

express coordinated linkage compounding the sandwich structure as Fig. 1 of [(PNCl₂)₃]₂·CoAc₂, complex formed.

XRD spectrum of the complex possesses 18 prominent peaks, for which atomic angles (Table-1) and atomic distance (Table-2) were calculated from the values of $\sin^2 \theta$, hkl and 'd' found from its XRD pattern. The results confirm Co^{2+} ion bridged, hexadentated, P—N—Co sandwich array of the complex $[(PNCl_2)_3]_3\cdot CoAc_2$.

TABLE-1
ATOMIC DISTANCE OF THE COMPLEX, [(PNCl₂)₃]₃·CoAc₂

S. No.	Atoms	Angles (°)
1.	N(3)—P(1)—N(1)	135.00
2.	P(1)—N(1)—P(2)	125.26
3.	N(1)—P(2)—N(2)	135.00
4.	P(2)—N(2)—P(3)	125.26
5.	N(2)—P(3)—N(3)	135.00
6.	P(3)—N(3)—P(1)	125.26
7.	ClP(1)Cl	116.00
8.	Cl—P(2)—Cl	108.00
9.	ClP(3)Cl	116.00
10.	P(4)—N(4)—P(5)	125.26
11.	N(4)—P(5)—N(5)	135.00
12.	P(5)—N(5)—P(6)	125.26
13.	N(5)—P(6)—N(6)	135.00
14.	P(6)—N(6)—P(4)	125.26
15.	N(6)—P(4)—N(4)	135.00
16.	ClP(4)Cl	116.00
17.	ClP(5)Cl	116.00
18.	Cl—P(6)—Cl	108.00

1314 Jadon Asian J. Chem.

S. No.	Atom	a ₀ (Å)	b ₀ (Å)	e ₀ · (Å)
1.	P(1)	2.53	1.79	2.19
2.	P(2)	5.07	5.37	4.62
3.	P(3)	7.60	7.64	7.24
4.	P(4)	10.13	11.05	9.89
5.	P(5)	12.66	12.67	12.43
6.	P(6)	15.20	14.67	14.59

TABLE-2
AXIAL DISTANCES OF [(PNCl₂)₃]₂·CoAc₂

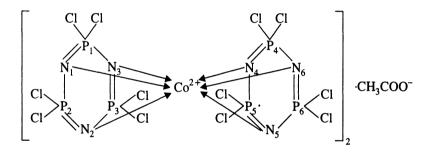


Fig. 1. Proposed structure of the complex, [(PNCl₂)₃]₂·CoAc₂

ACKNOWLEDGEMENT

The author is grateful to the Director, USIC, Delhi University, Delhi for providing instrumental facilities.

REFERENCES

- 1. J. Ansley and P.B. Udy, J. Chem. Soc. (A), 3005 (1970).
- 2. H. Binder, Z. Anorg. Allg. Chem., 383, 130 (1971).
- Y. Busleav, B.M. Levin, M.Z.G. Ry, S.P. Petrosynnts and B.V. Micronova, Zh. Neoorg. Khim., 14, 3245 (1969).
- 4. D. Millington and B.B. Sower, J. Chem. Soc., Dalton Trans., 23 (1973).
- 5. H.W. Roesky and H. Weizer, Chem. Ber., 106, 280 (1973).
- 6. ——, Chem. Ber., 107, 1153 (1974).
- 7. H.R. Allock, Inorg. Chem., 38, 280 (1999).
- 8. O.S. Jung, Inorg. Chem., 38, 5447 (1999).
- 9. S.P.S. Jadon, Asian J. Chem., 15, 154 (2003).
- 10. M.L. Nelson and J.T. Morrow, Inorg. Synth., 6, 99 (1960).
- 11. A.I. Volgel, A Text Book of Quantitative Inorganic Analysis, ELBS, London (1968).