NOTE

Cyclization of 2'-Hydroxychalcones in Dimethyl Sulphoxide

SURENDER KUMAR and J.K. MAKRANDI*

Department of Chemistry
M.D. University, Rohtak-124 001, India
E-mail: s_kaushik4@rediffmail.com

An attempt to cyclize 2-Hydroxy-chalcones in dimethyl sulphoxide (DMSO) has been made.

Key Words: Cyclization, 2'-Hydroxychalcones, DMSO.

One of the methods for the synthesis of flavones, a well known class of naturally occurring compounds, involves the oxidative cyclization of 2'-hydroxychalcones¹. Various oxidizing agents being used include SeO₂, DDQ³, I₂, HIO₄. During an attempt to cyclize 2'-hydroxychalcones using SeO₂ in DMSO⁶, the reaction time was found to improve tremendously (from 24 to 1.5 h).

Earlier conversion of 2'-hydroxychalcones into falvanones has been reported using acid⁷, base⁸ or metal ions⁹. The yields are generally poor due to reversible nature of the reaction.

It is the first report that 2'-hydroxychalcones is being cyclized in aprotic polar solvent alone. Using the above conditions, differently substituted flavanones were obtained.

In order to study the role of DMSO in the reaction, 2'-hydroxychalcone was heated with DMSO alone. The progress of the reaction was checked on TLC after 30 min, formation of a compound was observed which was different from flavone. The reaction was worked up after 4 h, when a colourless compound, m.p. 76–77°C separated out. Its 1H NMR showed a multiplet at $\delta(2.80-3.00)$ for two protons (CH₂ at position 3), a double doublet at $\delta(5.20)$ for one proton (H-2), a doublet at $\delta(7.60)$ for one proton (H-5) along with a multiplet at $\delta(6.70-7.20)$ for eight aromatic protons (C₆H₅, H-6, H-7 and H-8).

Based on the above data, the compound was assigned the structure dihydroflavone (flavanone). The structure was finally confirmed by its comparison with authentic sample⁹.

T 4	nı	_
IΑ	ĸ	٠r.

Compound	R ¹	R ²	R^3	m.pt.	Lit. m.pt.	Yield (%)
1a	Н	Н	Н	76–77	78 ⁴	60
1b	Н	Н	OCH ₃	96–98	98 ⁴	55
1c	OCH ₃	Н	Н	90	91 ³	50
1d	OCH ₃	Н	OCH ₃	92–93	94–95 ³	53
1e	Н	CH ₃	Н	104–105	105 ⁴	57
1f	Н	CH ₃	OCH ₃	109–110	1104	60
1g	Н	Br	Н	113–115	115 ⁹	55
1h	Н	Br	OCH ₃	108–109	1109	58

General procedure (flavanone)

A solution of 2'-hydroxychalcone (0.5 g) in dry dimethyl sulphoxide was heated under anhydrous condition on an oil bath at 120–130°C for 4 h. Completion of the reaction was checked by TLC. Ice-cold water was added to the reaction mixture after cooling. The solid that separated out was filtered, washed with water and recystallized from petroleum ether to give flavanone.

REFERENCES

- D.N. Dhar, The Chemistry of Chalcones and Related Compound, John Wiley Sons, p. 46 (1981).
- 2. H.H. Lee and C.H. Tan, J. Chem. Soc., 2743 (1965).
- 3. K. Imafuku, M. Honda and J.F.W. Mcomie, Synthesis, 199 (1987).
- 4. A.G. Dosh, P.A. Soni and B.J. Ghiye, Indian J. Chem., 25B, 759 (1986).
- 5. N. Hans and S.K. Grover, Syn., Commun., 23, 1021 (1993).
- 6. J.K. Makrandi and Seema, Chem. Ind., 607 (1988).
- 7. R. Ludwig, B. Walter, Chem. Ber., 37, 2634 (1904).
- 8. T.A. Geismann and R.O., Clinton, J. Am. Chem. Soc., 68, 697 (1946).
- 9. J.K. Makrandi and S. Bala, Syn. Commun., 39, 3555 (2000).

(Received: 3 December 2003; Accepted: 11 October 2004)

AJC-4084