Polarographic Study of Stability Constants of Lead(II) Complexes with β-Picoline, Glycine and Alanine

AMIT VERMA, P.K.S. CHAUHAN and R.K. PALIWAL*

Department of Chemistry, Narain College, Shikohabad-205 135 (India)

The mixed ligand complexes of β -picoline (β -pico), glycine (gly⁻) and Alanine (ala⁻) with Pb(II) have been studied polarographically at constant ionic strength, μ = 1.5 M (NaNO₃) and pH 6.0 at 25.4 ± 0.1°C. The reduction of the complexes at d.m.e. is reversible and diffusion-controlled. Two mixed complexes, [Pb(gly)(β -pico)]⁺ and [Pb(ala)(β -pico)]⁺ are formed and their stability constants at 25.4°C are: log β_{11} = 5.9515 and log β_{11} = 6.0640 respectively.

Key Words: Stability constants, Lead(II) complexes, β -Picoline, Glycine, Alanine, Polarographic study.

INTRODUCTION

Saxena et al.¹ have reported polarographic study of mixed ligand complexes of Pb(II) with pyridoxine amino and amino acids. Singh et al.^{2,3} have studied the mixed complexes of Pb(II) with imidazole, pyridine and citrate, succinate and tartrate ions. Besides this the survey of literature⁴⁻¹⁰ it appears that polarographic studies of mixed complexes of Pb(II) with β -picoline and glycine and alanine are stil! lacking. The present work reports the studies of mixed ligand complexes of Pb(II) with β -picoline, glycine and alanine.

EXPERIMENTAL

All reagents were analytical grade and their solutions were prepared in conductivity water. The ionic strength was maintained constant at $\mu=1.5$ using NaNO3 as supporting electrolyte. The concentration of Pb(II) was maintained at 1×10^{-3} M. Polarograms were obtained 11 by means of a manual polarograph (Toshniwal CL 02) in conjunction with Toshniwal polyflex galvanometer (PL 50). All the measurements were made at $25.4\pm0.1^{\circ}\text{C}$ and pH 6.0. A saturated calomel electrode (SCE) was used as reference electrode. The d.m.e. had the following characteristics (in 0.1 M NaNO3, open circuit): m=2.219 mg/s, t=3.5 s, $m^{2/3}t^{1/6}=2.10$ mg $^{2/3}$ s $^{-1/2}$, $h_{corr}=40$ cm.

RESULTS AND DISCUSSION

The reduction of Pb(II) in β -picoline, glycine and alanine was found to be reversible and diffusion controlled. The same was true for the mixed system. The slopes of linear plots of $\log i/i_d$ -i vs. $E_{d.m.e.}$ were in the range 30–33 mv and the plots of i_d vs. $h_{corr}^{1/2}$ were linear and passed through the origin. The stability constants of simple complexes of Pb(II) with β -picoline, glycine and alanine were determined separately prior to the study of mixed ligand system. Identical conditions were maintained in both the simple and mixed systems.

(a) Simple System: The simple systems of Pb(II) with β -picoline, glycine and alanine were studied by the method of Deford and Hume¹². Identical conditions were maintained in both simple and mixed systems, *i.e.*, 1.5 M sodium nitrate as supporting electrolyte and temperature was maintained contant at 25.4 \pm 1°C. The values of stability constants of simple complexes have been tabulated in Table-1.

TABLE-1 STABILITY CONSTANTS OF β-PICOLINE, GLYCINE AND ALANINE WITH Pb(II)

Contents	$\log \beta_1$	$\log eta_2$		
β-Picoline	0.903	1.857		
Glycine	5.342	9.698		
Alanine	5.301	9.778		

(b) Mixed System: Glycine (gly⁻) and alanine (ala⁻) concentrations were varied from 0.10 M to 0.50 M and that of β -picoline (β -pico) was kept constant at 0.05 M. The $E_{1/2}$ values were greater compared to those obtained in the absence of β -picoline thereby showing the formation of mixed complexes. The system was repeated at another concentration of β -picoline (0.10 M).

Schaap and McMaster's method¹⁸ was used to determine the values of the stability constants of mixed complexes. The polarographic characteristics and F_{ij} [XY] functions of mixed complexes of Pb(II) with β -picoline and glycine and alanine at fixed [β -pico] (0.05 M and 0.10 M) are presented in Tables 2 and 3.

TABLE-2 Pb(II)-GLYCINE-β-PICOLINE SYSTEM [Pb²⁺] = 1×10^{-3} M, $\mu = 1.5$ M (NaNO₃), pH = 6.00, Temp = 25.4 ± 0.1 °C, (E_{1/2})_S = -0.404 volts (SCE)

[gly] _t (M)	[gly] _f (×10 ⁵ M)	-E _{1/2} V (SCE)	log I _m /I _c	Slope (mv)	F ₀₀ [X, Y]	$F_{10}[X, Y]$ (×10 ⁻⁴)	F ₂₀ [X, Y] (×10 ⁻⁹)		
	Series-I [β -pico] _t = 0.05 M (Fixed)								
0.10	1.7	0.428	0.01631	30	6.70	_	_		
0.20	3.3	0.438	0.02087	31	14.75	25.75			
0.30	4.9	0.448	0.02599	31	32.48	53.53	5.61		
0.40	6.6	0.453	0.02599	32	47.92	63.13	5.62		
0.50	8.3	0.457	0.03379	33	66.58	72.68	5.62		
Series-II [β -pico] _t = 0.10 M (Fixed)									
0.10	1.7	0.430	0.01637	31	7.83	_			
0.20	3.3	0.439	0.01985	30	15.90	29.24			
0.30	4.9	0.450	0.02599	33	37.95	64.69	6.67		
0.40	6.6	0.455	0.02909	32	56.38	75.96	6.66		
0.50	8.3	0.459	0.03906	33	78.73	87.32	6.66		

[gly],- Total concentration of glycine;

[gly] Free ligand concentration of glycine

Series I: $\log A = 0.795$ $\log B = 5.414$ $\log C = 9.748$ Series II: $\log A = 0.795$ $\log B = 5.505$ $\log C = 9.819$

TABLE-3 Pb(II)-ALANINE-β-PICOLINE SYSTEM $[Pb^{2+}] = 1 \times 10^{-3} \text{ M}, \ \mu = 1.5 \text{ M} (NaNO_3), \ pH = 6.00, \ Temp. = 25.4 \pm 0.1^{\circ}\text{C},$ $(E_{1/2})_S = -0.404$ volts (SCE)

[ala] _t (M)	$[ala]_{f}$ (×10 ⁵ M)	-E _{1/2} V (SCE)	log I _m /I _c	Slope (mv)	F ₀₀ [X, Y]	$F_{10}[X, Y]$ (×10 ⁻⁴)	$F_{20}[X, Y]$ (×10 ⁻⁹)		
	Series-I [β -pico] _t = 0.05 M (Fixed)								
0.10	1.3	0.427	0.00981	30	6.11				
0.20	2.7	0.437	0.01934	31	13.60	20.74			
0.30	4.0	0.445	0.02300	32	25.55	43.77	4.96		
0.40	5.4	0.449	0.02961	33	35.40	50.74	4.95		
0.50	6.7	0.452	0.04431	33	46.24	57.07	4.93		
	Series-II [β -pico] _t = 0.10 M (Fixed)								
0.10	1.3	0.429	0.00982	3i	7.14				
0.20	2.7	0.440	0.01430	32	16.97	29.51			
0.30	4.0	0.448	0.02961	33	32.75	59.39	5.34		
0.40	5.4	0.452	0.03431	33	45.19	67.01	5.37		
0.50	6.7	0.455	0.04431	33	58.39	73.72	5.33		

[ala],- Total concentration of alanine

[ala] Free ligand concentration of alanine

Series I: $\log A = 0.903$ log B = 5.380 $\log C = 9.698$ Series II: log A = 0.954log B = 5.579 $\log C = 9.732$

The stability constants of the mixed complexes were calculated from the constants A, B and C. One mixed complex as is formed in each mixed system:

 $[Pb(gly)(\beta-pico)]^{+} \log \beta_{11} = 5.9515$ Pb(II)–Glycine–β-picoline system Pb(II)-Alanine-β-picoline system $[Pb(ala)(\beta-pico)]^+ \log \beta_{11} = 6.0640$

The results of the present study are summarized in the following diagrams (Schemes I and II), where the numerical values shown are the logarithms of the equilibrium constants for the reactions indicated:

Scheme-I: Pb(II) Glysine-β-picoline system Scheme-II: Pb(II) Alanine-β-picoline system

858 Verma et al. Asian J. Chem.

The mixing constant K_M (equilibrium constant) for the reactions:

is given by the relation

$$\log K_{M} = \log \beta_{11} - 1/2(\log \beta_{20} + \log \beta_{02})$$

These work out to be +0.181 for reaction 1 and +0.247 for reaction 2. The positive values show that the mixed complexes $[Pb(gly)(\beta-pico)]^+$ and $[Pb(ala)(\beta-pico)]^+$ are more stable than simple complexes: $[Pb(\beta-pico)_2]^{2+}$, $[Pb(gly)_2]$ and $[Pb(ala)_2]$.

The equilibrium constant (log values) for the following disproportion reactions:

$$2[Pb(gly)(\beta-pico)]^{+} \qquad [Pb(gly)_{2}] + [Pb(\beta-pico)_{2}]^{2+}$$
 (3)

$$2[Pb(ala)(\beta-pico)]^{+} \qquad \qquad [Pb(ala)_{2}] + [Pb(\beta-pico)_{2}]^{2+}$$
 (4)

works out to be -0.353 and -0.493 for the disproportion reactions 3 and 4 respectively. The negative log values for the equilibrium constants show that the formation of mixed complexes is favoured over simple ones.

The complex $[Pb(ala)(\beta-pico)]^+$ is more stable than the complex $[Pb(gly)(\beta-pico)]^+$.

ACKNOWLEDGEMENT

Thanks are due to Dr. M.C. Yadav, Principal, Narain College, Shikohabad for provision of facilities.

REFERENCES

- 1. R.K. Saxena, C.P.S. Chandel and C.M. Gupta, Indian J. Chem., 28A, 628 (1989).
- 2. R. Kulshrestha, M. Shivhare and M. Singh, J Electrochem. Soc. (India), 33, 259 (1984).
- 3. R. Kulshrestha and M. Singh, Indian J. Chem., 24A, 852 (1985).
- 4. J.K. Garg, P.S. Verma and D.S. Jain, Proc. Indian Acad. Sci. 92, 77 (1983).
- 5. ——, J. Electrochem. Soc. (India), 34, 268 (1985).
- 6. J.K. Garg, J. Electrochem. Soc. (India), 38, 289 (1989).
- 7. B.K. Singh, C.L. Jain and R.S. Sindhu, J. Indian Chem. Soc., 73, 297 (1996).
- 8. A.A. Abdel Gaber, M.A. Ghandour and H.S. Elsaid, J. Indian Chem. Soc., 78, 445 (2001).
- 9. S.K. Singh and C.P. Singh Chandel, Asian J. Chem., 14, 53 (2002).
- 10. M. Zelic, Electronalysis, 7, 4 (1995).
- 11. L. Meites, Polarographic Techniques, Interscience, New York, p. 219 (1965).
- 12. D.D. Deford and D.N. Hume, J. Am. Chem. Soc., 73, 5321 (1951).
- 13. W.B. Schaap and D.L. McMaster, J. Am. Chem. Soc., 83, 4699 (1961).