Chemical Constituents of Essential Oil from the Leaves of Ghanaian Ocimum gratissimum L.

ERNEST OWUSU-ANSAH*, F.K. OPPONG-BOACHIE† and R.T. AWUAH†

Department of Chemistry, University of Cape Coast, Cape Coast, Ghana

E-mail: eowusu ansah@yahoo.com

Leaves from Ghanaian *Ocimum gratissimum* yielded essential oil upon distillation. A fraction from the column chromatography supported infrared and proton nuclear magnetic resonance absorption and also GC-MS revealed that thymol is the major component. The melting point of phenylurethrane derivative of the fraction from the column chromatography conclusively indicated thymol and not eugenol. Also GC-MS analysis on the steam distillation extract of EtOH: hexane mixture (1:1) gave these constituents: β -selinene, terpinene-4-ol, γ -terpinene, terpinolene, α -terpinene and α -thujene which are not reported in the earlier studies.

Key Words: Ocimum gratissimum, Thymol, Eugenol, Carvacrol.

INTRODUCTION

Ocimum gratissimum L. (Labiate) known as Ocimum viride Willd¹ is a common plant grown around houses for use in traditional medicine. Phenylurethane and p-iodophenylurethane derivatives of the yellow oil were obtained from leaf extract by Route Bertrand² from Ivory Coast and Central African Republic at 107 and 175°C corresponding to the literature values of thymol; then he concluded that the yellow oil from the leaves of O. gratissimum contained thymol. Glichitch and Naves³ reported both thymol and carvacrol (an isomer) as components of yellow oil from the leaves of O. gratissimum from Central African Republic.

Both El-said et al.⁴ and Sofowora⁵ reported thymol as the main component of Nigerian O. gratissimum when the essential oil obtained from the leaves was analyzed by GC-MS. Other components found by Sofowora⁵ and Sainbury⁶ were α -pinene, camphene, α -terpinene, Δ^3 -carene, myrcene, 1,8-cineole, p-cymene, linalool, limonene, camphene, α -terpineol, humulene, methyliso-eugenol, methyleugenol, caryophyllene, ocimene and 1-cadiene.

Tripathi et al. ⁷ reported eugenol as the main component in the essential oil from the leaves of O. gratissimum (Clocium) in India. No thymol was found as a component of the oil. The essential oil from the leaves of O. gratissimum from Ghana was then needed to be investigated.

EXPERIMENTAL

Infrared spectra of all samples were recorded using neat samples on Specord M 80 cm Zeiss Jena spectrometer. ¹H NMR spectrum samples were recorded using deuterated chloroform (CDCl₃) with 1% tetramethylsilane (TMS) as internal reference on Hitachi 60 MHz spectrometer, NMR, R-1200 model.

[†]Department of Chemistry, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana.

Plant materials: O. gratissimum leaves were collected from T.I. Ahmadiyya Secondary School, Prempeh COllege and Staff Quarters of Kwame Nkrumah University of Science and Technology (KNUST), Kumasi. The leaves were identified at Herbarium of Biological Sciences Department, KNUST, Kumasi, Ghana.

Steam distillation: 6.3 kg of fresh leaves of O. gratissimum were chopped into pieces and subjected to steam distillation. Diethyl ether was used to extract the crude oil and dried over anhydrous sodium sulphate. Diethyl ether was removed by simple distillation and the crude oil which was yellow in colour was obtained.

Thin layer chromatography (TLC): Microscope slides coated with Macherey Nagel's polygram silica gel (0.25/UV₂₅₄) were used for TLC. The dried O. gratissimum oil (0.5 mL) was dissolved in diethyl ether 5 mL and spotted on microscope slides with silica gel. The slides were developed using petroleum ether : toluene mixture (8 : 2 v/v). The separated spots on the developed chromatogram were viewed under iodine vapour and UV light (254 nm). Four separated spots in iodine vapour were identified and the R_f values calculated.

The dried oil (15.0 g) was put on a glass column packed with silica gel (60.120 mesh) (375 g) and eluted with petroleum ether: toluene mixture (8:2 v/v). Drops of the eluate from the column (5 mL) were collected in test tubes. The contents of the test tubes were subjected to TLC and eluted with the same R_f values as obtained previously were pooled together. Three fractions C₁, C₂ and C₃ were obtained in this manner. Each fraction was concentrated on Buchi rotary evaporator and finally dried in an oven at 60°C to a constant weight. A fourth fraction, C₄, was obtained when the column was eluted with ethanol.

RESULTS AND DISCUSSION

Fresh leaves of O. gratissimum (6.3 kg) yielded 22.9 g (0.36%) of crude yellow oil upon steam distillation; the major component of the oil when eluted with petroleum ether: toluene mixture (8:2 v/v) was the second component, C2, whose yield was 52%. This component showed as one spot on a TLC with R_f0.34.

Assignable absorptions in the infrared and ¹H NMR spectra of C₂ are summarized in Table-1.

TABLE-1

[IR] (v _{max} cm ⁻¹)	¹ H NMR (CDCl ₃ with 1% TMS δppm)
3600-3200 (B) (OH)	4.88, 1H(b) (Ar—OH)
3020 (w), 1615, 1515 (s) (Ar—H)	6.59–7.01, 3H, M, Ar—H
2930, 1460(s) (—CH ₂ , CH ₃)	2.28, 3H, s, Ar—CH ₃
1385 and 1375 (s) (CH(CH ₃) ₂)	1.28, 6H, d, $J = 6.5 \text{ Hz}$, —CH(CH ₃) ₂]
	3.11, 1H, m, (—CH(CH ₃) ₂]

The infrared specctrum of C₂ showed a strong C—H absorption at 29.80 cm⁻¹. A strong doublet absorption representing geminal methyl was observed at 1385-1375 cm⁻¹. The ¹H NMR spectrum showed six portion doublet with coupling constant (J = 6.5 Hz) at 1.28 ppm representing two methyl groups. These two methyl groups must therefore be viccinally coupled to a single proton and should therefore be the germinal methyl indicated in the infrared. This assertion is further enhanced by the recognition of methine proton multiplet at 3.11 ppm

which compares with the methine proton septet at 3.15 of the pure thymol spectrum^{8, 9}. The above information clearly indicates that C_2 contains the isopropyl $\{-CH(CH_3)_2\}$ structural unit. The shift of the methine proton to a lower field is predictably due to the deshielding effect of the aromatic ring current.

The ¹H NMR spectrum also showed a three proton singlet at 2.28 ppm indicating the presence of a methyl group. The low field chemical shift of this methyl singlet when compared to known chemical shift of other methyl singlet also indicates deshielding of the methyl group by an aromatic ring. The weak absorption at 3020 cm⁻¹ and strong sharp peaks between 1600–1500 cm⁻¹ in the infrared spectrum inferred the presence of an aromatic entity. This is supported in the ¹H NMR spectrum by a three-proton multiplet from 6.59–7.01 ppm which are exactly the same chemical shift values that can be ascertained by the aromatic protons of pure thymol.

A broad and strong infrared absorption from $3600-3200 \text{ cm}^{-1}$ suggested the presence of a hydrogen-bonded hydroxyl group. The hydroxyl proton occurred in the ^{1}H NMR as a broad absorption centred at 4.88 ppm assignable as a phenolic hydroxyl as compared with that in literature 8,9 . A pink phenylurethane derivative formed from the reaction of phenylisocyanate with C_2 melted at $106-107^{\circ}\text{C}$ supporting C_2 to be thymol. The phenylurethane derivative of an isomeric carvacrol would have melted at 97°C . It can now be established that the major constituent of essential oil from the leaves of O. gratissimum in West Africa is thymol. No eugenol has been reported.

The following constituents were found in the essential oil of the leaves of Ghanaian O. gratissimum using EtOAc: hexane (1:1) which were not found in Nigerian O. gratissimum or reported in the earlier studies of O. gratissimum using GC-MS. They are β -selinene, terpinene-4-ol, γ -terpinene, α -thujene and α -terpinene

REFERENCES

- M. Iwu, Handbook of African Medicinal Plants, 2nd Edn., CRC Press, Boca Raton, Fl, pp. 214-215 (1993).
- E. Guenther, The Essential Oils, Vol. III, D. Van Nostrand & Co., Princeton, NJ, p. 428 (1952); pp. 501-516 (1949).
- 3. M. Glichitch and S. Naves, Chemie & Indusrie, 29 (Numero Special), 1029 (1933).
- 4. F. El-Said, E.A. Sofowora, S.A.F. Malcom and A. Hofer, Planta Medica, 17, 195 (1969).
- 5. E.A. Sofowora, Planta Medica, 18, 173 (1970).
- 6. M. Sainbury and E.A. Sofowora, Phytochemistry, 10, 3309 (1971).
- R.D. Tripathi, R. Bonerji, M.L. Sharma, V.R. Balasubrahmanyam and S.K. Nigam, Agric. Biol. Chem., 49, 2277 (1985).
- 8. R.T. Morrison and R.N. Boyd, Organic Chemistry, 6th Edn., Prentice-Hall International Edition, New Jersey, pp. 590–594, 912–913, 1032 (1992).
- H.W. Dudley and I. Fleming, Spectroscopic Methods in Organic Chemistry, 3rd Edn., McGraw-Hill Book Company (U.K.) Ltd., pp. 35-152 (1980).