NOTE

Synthesis of Substituted 3-Formyl Chromones

R.G. NANDGAONKAR† and V.N. INGLE*

Department of Chemistry Nagpur, University, Nagpur-440 010, India

Substituted 3-formyl chromones (2) have been synthesized through the cyclization of substituted 2-hydroxyactophenones with dimethylformamide in the presence of POCl₃. Their structures have been characterized by elemental analysis and spectral data. These compounds were screened for antibacterial activity against *S. aureus* and *E. coli*.

Key Words: Synthesis, Substituted 3-formyl chromones, Antibacterial Studies.

2-Hydroxy acetophenones are convenient intermediate for the synthesis of 3-formyl chromones; they are found to possess considerable pharmacological properties¹⁻³. Substituted 3-formyl chromones (2) have been synthesized from various substituted 2-hydroxy acetophenones by formylation (Vilsmeier-Haack reaction).

$$\begin{array}{c|c}
R & \xrightarrow{OH} & \xrightarrow{DMF} & R & \xrightarrow{O} & CHO \\
C & & & & & & & & & & & \\
C & & & & & & & & & & \\
C & & & & & & & & & & & \\
C & & & & & & & & & & & \\
C & & & & & & & & & & & \\
C & & & & & & & & & & & \\
C & & & & & & & & & & & \\
C & & & & & & & & & & & \\
C & & & & & & & & & & & \\
C & & & & & & & & & & & \\
C & & & & & & & & & & \\
C & & & & & & & & & & \\
C & & & & & & & & & & \\
C & & & & & & & & & \\
C & & & & & & & & & \\
C & & & & & & & & & \\
C & & & & & & & & \\
C & & & & & & & & \\
C & & & & & & & & \\
C & & & & & & & & \\
C & & & & & & & & \\
C & & & & & & & & \\
C & & & & & & & & \\
C & & & & & & & & \\
C & & & & & & & \\
C & & & & & & & \\
C & & & & & & & \\
C & & & & & & & \\
C & & & & & & & \\
C & & & & & & & \\
C & & & & & & & \\
C & & & & & & & \\
C & & & & & & & \\
C & & & & & & & \\
C & & & & & & & \\
C & & & & & \\
C & & & & & & \\
C & &$$

Melting points were determined in open capillary tubes and are uncorrected. The UV spectra (MeOH) and IR spectra (KBr/nujol) were recorded on Shimadzu UV-visible spectrophotometer and Perkin-Elmer model respectively.

Substituted 2-hydroxy acetophenones (1) were prepared by reported procedure⁴⁻⁶.

6-Chloro-8-nitro-3-formyl-chromone (2b): Dimethylformamide (6.0 mL) was cooled in ice-cold water and 2-hydroxy-3-nitro-5-chloro acetophenone (2.15 g, 0.01 mol) was added to this with vigorous stirring; phosphorus oxychloride (2.0 mL, 0.025 mol) was slowly added into it. The pink colour thick mass was kept overnight at room temperature. It was then decomposed by cold water. The solid obtained was crystallized from ethanol, yield (71%), m.p. 108°C.

UV spectrum (CH3OH): $\lambda_{max}\,216$ and 300 nm. IR spectra (KBr cm $^{-1})$: 3084.2

[†]Department of Chemistry, M.B. Patel College, Sakoli, Distt. Bhandara, India.

v(Ar, C-H), 16550 v(C=O), 1538 v(C-N), 1452 and 1351.2 $v(Ar-NO_2)$,

All other compounds (2a-o) of this series were prepared by the same procedure and their analytical data are recorded in Table-1.

TABLE-1 PHYSICAL DATA OF SUBSTITUTED 3-FORMYL CHROMONES (2a-0)

S. No.	Compounds (m.f.)	Yield (%)	m.p. (°C)	Elemental Analysis		Н	
				Found	(Calcd.)	Found	(Calcd.)
(i) 6-Chlor	ro-3-formyl chromones						
(a) 6-Chloro-3-formyl chromone (C ₁₀ H ₅ O ₃ Cl)		71	168	57.43	57.55	2.32	2.39
	oro-8-nitro-3-formyl chromone 4NO ₅ Cl)	67	108	47.24	47.33	1.51	1.57
	oro-8-bromo-3-formyl chromone 4O ₃ ClBr)	65	155	41.61	41.73	1.31	1.39
(ii) 6-Metl	hyl-3-formyl-chromones						
(d) 6-Metl (C ₁₁ H ₂	hyl-3-formyl chromone ₈ O ₃)	73	173	70.11	70.21	4.19	4.25
(e) 6-Meth (C ₁₁ H-	hyl-8-nitro-3-formyl chromone ₇ NO ₅)	69	180	59.09	59.19	3.06	3.13
	hyl-8-bromo-3-formyl chromone ₇ O ₃ Br)	66	145	49.35	49.43	2.57	2.62
(iii) 6-Nitr	o-3-formyl chromones						
(g) 6-Nitro (C ₁₀ H ₂	o-3-formyl chromone 5NO ₅)	70	160	54.69	54.79	2.20	2.28
	nitro-3-formyl chromone ₄ N ₂ O ₇)	58	104	45.38	45.45	1.46	1.51
	o-8-bromo-3-formyl chromone 4NO ₅ Br)	63	80.82	40.16	40.26	1.26	1.34
(iv) 6-Hyd	lroxy-3-formyl chromones						
(j) 6-Hyd (C ₁₀ H	roxy-3-formyl chromone ₆ O ₄)	68	198	60.78	60.91	2.96	3.04
(k) 6-Hyd (C ₁₀ H	roxy-8-nitro-3-formyl chromone 5NO ₆)	54	153	50.96	51.06	2.07	2.12
	roxy-8-bromo-3-formyl chromone 5O ₄ Br)	58	189	44.48	44.60	1.76	1.85
(v) 7-Hyd	roxy-3-formyl chromones						
(m)7-Hyd (C ₁₀ H	roxy-3-formyl chromone ₆ O ₄)	80	269	60.80	60.91	2.98	3.04
(n) 7-Hyd (C ₁₀ H	roxy-8-nitro-3-formyl chromone 5NO ₆)	64	162	50.94	51.06	2.07	2.12
	roxy-8-bromo-3-formyl chromone ₅ O ₄ Br)	74	210	44.50	44.60	1.79	1.85

AJC-4204

Antibacterial activity

The compounds (2) were screened for antibacterial activity and tested using paper disc method⁷ at $100 \mu g/mL$ concentration against gram positive bacteria S. aureus and gram negative bacteria E. coli. Most of the compounds were found to have moderate activity against both the bacteria. The results of antibacterial study are compiled in Table-2.

	8-H		8-	Nitro	8-Bromo	
Compounds	E. coli	S. aureus	E. coli	S. aureus	E. coli	S. aureus
6-Chloro-3-formyl chromone		+	+	+	+	_
6-Methyl-3-formyl chromone	+		+	_	+	_
6-Nitro-3-formyl chromone	+	+	+	++	++	++
6-Hydroxy-3-formyl chromone	+	+ -	++		-	. +
7-Hydroxy-3-formyl chromone	++	+	++	4	+	_

TABLE-2
RESULTS OF ANTIBACTERIAL STUDY

ACKNOWLEDGEMENTS

The authors are thankful to the Department of Chemistry, Nagpur University, Nagpur for providing necessary facilities, Director CDRI Lucknow for spectral analysis and Dr. Miss M.B. Patil and Harit Jha, Biochemistry Department, Nagpur University, Nagpur for antibacterial activity. One of the authors (RGN) thanks the University Grants Commission (UGC), New Delhi, for Teacher Fellowship.

REFERENCES

- 1. A. Nohara, T. Umetani and Y. Sanno, Tetrahedron Lett., 30, 3553 (1974).
- 2. C.K. Ghosh and K.K. Mukhopadhyay, J. Indian Chem. Soc., 52, 52 (1978).
- Z. Jerzmanowska, W. Basinski and Zielinkska, Polish J. Chem., 54, 383 (1980); Chem. Abstr., 93, 239305k (1980).
- V.N. Ingle, Ph.D. Thesis, Babasaheb Ambedkar Marathwada University, Aurangabad (1977).
- 5. K.A. Thakar and P.R. Muley, *Indian J. Chem.*, 14, 226 (1976).
- 6. M.D. Prabahavat, Ph.D. Thesis, Nagpur University, Nagpur (1999).
- 7. J.D. Albright and L. Goldmann, J. Am. Chem. Soc., 87, 4214 (1965).

(Received 31 August 2004; Accepted: 7 March 2005)

⁽⁺⁺⁾ Active, (+) Moderately active, (-) Inactive.