NOTE

Synthesis of 3-Phenylimino-4-aroyl/acyl-6-aroyl/acyl hydrazino-1,2,4,5-dithiadiazine

J.R. CHOUDHARI and B.N. BERAD*

Department of Chemistry, Shri Shivaji Science College, Amravati-444 603, India

Several 3-phenylimino-4-aroyl/acyl-6-aroyl/acyl hydrazino-1,2, 4,5-dithiadiazines have been synthesized by one step condensation reaction of N-phenyl-S-chloroisothiocarbamoyl chloride and bis-1,5-aroyl/acyl-3-thiocarbohydrazides followed by basification of resultant compounds. The structures of the compounds were established on the basis of elemental analysis and spectral studies.

Key Words: Synthesis, Substituted dithiadiazine.

Synthesis of various dithiadiazines are reported in the literature $^{1-8}$. Some of them are shown to possess antifungal activity. Recently, the syntheses of 1,2,4,5-dithiadiazines with γ -picoline oil and aryl substituents have been reported in the literature $^{9, 10}$. In this communication, some new 1,2,4,5-dithiadiazines with aroyl/acyl hydrazino substituents have been synthesized and characterized

The formation of II, IV, V and VI can be shown as given in Scheme-1.

The melting points were recorded using hot paraffin bath and are uncorrected. Chemicals used were of AR grade. IR spectra were recorded on Perkin-Elmer spectrophotometer in the range 4000–400 cm⁻¹ in Nujol mull and KBr pellets. PMR spectra were recorded with TMS as internal standard using CDCl₃ and DMSO-d₆ as solvent.

TABLE-1
PHYSICAL DATA AND ELEMENTAL ANALYSIS OF COMPOUNDS (V) AND (VI)

Compd.	R	m.f.	m.p. (°C)	Yield (%)	Elemental analysis Found (Calcd.) %	
					N	S
Va	o-Hydroxy phenyl	$C_{22}H_{17}N_5O_4S_2$	177	75	14.68 (14.61)	13.34 (13.36)
Vb	Phenyl	$C_{22}H_{17}N_5O_2S_2$	178	69	15.54 (15.65)	14.11 (14.31)
Vc	Styryl	$C_{26}H_{21}N_5O_2S_2$	165	71	13.96 (14.02)	12.79 (12.82)
Vd	p-Hydroxy phenyl	C ₂₂ H ₁₇ N ₅ O ₄ S ₂	151	74	14.58 (14.61)	13.20 (13.36)
Ve	n-Propyl	$C_{16}H_{21}N_5O_2S_2$	168	69	18.26 (18.46)	16.71 (16.88)
Vf	Methyl	$C_{12}H_{13}N_5O_2S_2$	164	72	21.23 (21.67)	19.60 (19.81)

Compd.	R	m.f.	m.p. (°C)	Yield (%)	Elemental analysis Found (Calcd.) %	
					N	S
VIa	o-Hydroxy phenyl	C ₂₄ H ₁₉ N ₅ O ₅ S ₂	179	80	13.35 (13.43)	12.20 (12.28)
VIb	Phenyl	C ₂₄ H ₁₉ N ₅ O ₃ S ₂	165	75	14.36 (14.31)	13.10 (13.08)
VIc	Styryl	$C_{28}H_{23}N_5O_3S_2$	170	76	12.58 (12.93)	11.61 (11.82)
VId	p-Hydroxy phenyl	C ₂₄ H ₁₉ N ₅ O ₅ S ₂	142	65	13.52 (13.43)	12.11 (12.28)
VIe	n-propyl	$C_{18}H_{23}N_5O_3S_2$	180	80	16.58 (16.62)	15.18 (15.20)
VIf	Methyl	C ₁₄ H ₁₅ N ₅ O ₃ S ₂	169	75	19.03 (19.17)	17.22 (17.53)

All the compounds gave satisfactory C and H analysis.

[R as given in Table-1] Scheme-1

Synthesis of 3-phenylimino-4-salicyloyl-6-salicyloyl hydrazino-1,2,4,5dithiadiazine (Va): The compound bis-1,5-salicyloyl-3-thiocarbohydrazide (IIa) was prepared by refluxing the mixture of thiocarbohydrazide (0.01 mol) and salicyloyl chloride (0.02 mol) (1:2) ratio with chloroform (20 mL) for 2 h. On completion of reaction and distilling off the solvent, the product was isolated (IIa) (yield 92%). It was crystallized from ethanol (m.p. 141°C). This reaction was extended to synthesize the other compounds (IIb-f) using different aroyl/acyl chlorides (Ib-f).

2802 Choudhari et al. Asian J. Chem.

Bis-1,5 salicyloyl-3-thiocarbohydrazide (0.01 mol) (IIa) was suspended in chloroform (20 mL). To this, a solution of N-phenyl-S-chloroisothiocarbamoyl chloride (0.01 mol) in chloroform was added. The reaction mixture was refluxed on boiling water bath for 3 h. The evolution of hydrogen chloride gas was clearly noticed as tested with moist blue litmus. After completion of reaction chloroform was distilled off, when a solid mass was obtained (yield 75%). It was crystallized from ethanol, m.p. 183°C. The solid was found to be acidic to litmus. On determination of an equivalent weight, it was identified as monohydrochloride of 3-phenyl imino-4-salicyloyl-6-salicyloyl hydrazino 1,2,4,5-dithiadiazine (IVa). (Equivalent weight of $C_{22}H_{17}N_5O_4S_2$ ·HCl, found 514, requires 515.5).

On basification with dilute ammonia a free base (Va) was obtained. It was crystallized from aqueous ethanol, m.p. 177°C.

Elemental Analysis (%) Found (Calcd.): C, 55.05 (55.11); H, 3.62 (3.54); N, 14.58 (14.61); O, 13.38 (13.36); S, 13.34 (13.36). IR^{11, 12} (v_{max} , cm⁻¹): 3314 v(-OH), 3217, 3118 v(N-H); 1610 v(C=O); 1485 v(C=C); 1293 v(C-N); 1528 v(C=N); 464 v(S-S); 758 v(C-S). PMR δ (9.61, 2H, S, OH); (7.84, 2H, S, NH), (6.83–7.73, 13H, m, Ar—H). The other compounds (**Vb-g**) were porepared by extending the above reaction to other bis-1,5-aroyl/acyl-3-thiocarbohydrazides and were isolated in good yield.

Synthesis of 3-phenyl imino-4-salicyloyl-5-acetyl-6-salicyloyl-hydrazino-1,2,4,5-dithiadiazine (VIa): A mixture of 3-phenyl imino-4-salicyloyl-6-salicyloyl hydrazino 1,2,4,5-dithiadiazine (Va) (0.01 mol) and acetic anhydride (0.01 mole) in glacial acetic acid (10 mL) was refluxed for 2 h. The reaction mixture was cooled and poured in a little crushed ice with water. A whitish product was precipitated (yield 80%). It was crystallized from aqueous ethanol and identified as 3-phenyl imino-4-salicyloyl-5-acetyl-6-salicyloyl hydrazino-1,2,4,5-dithiadiazine (VIa), m.p. 179°C. IR (v_{max} , cm⁻¹): 3316 v(—OH), 3124 v(N—H), 1640 v(C=O), 1529 v(C=N); 1493 v(C=C), 1309 v(C—N), 743 v(C—S), 525 v(S—S). The other compounds (VIb-f) were porepared by extending the above reaction to other 1,2,4,5-dithiadiazines and were isolated in good yield.

REFERENCES

- D.H.R. Barton, J.W. Ducker, W.A. Lord and P.D. Mangus, Am. J. Chem. Soc., Perkin Trans. 1, 28 (1976).
- 2. T. Masashi and M. Shuntaro, Heterocycles, 4, 1243 (1976).
- 3. Y. Katusmi and S. Isao, Bull. Chem. Soc. (Japan), 62, 2407 (1989).
- 4. J.M.M. Smits, P.T. Beurskens, B.G. Lenz and B. Zwanenburg, Acta Crystallogr., Sect. C. Cryst. Struct. Commun., 41, 1086 (1985).
- 5. M.K. Shrivastava, R.K. Khare and H. Sing, Bio. Chim. Farm, 138, 511 (1999).
- 6. K.T. Poots, J.S. Baum and Jonathans, Heterocycl. J. Chem., 298, 1637 (1991).
- 7. A. Sing, P. Rajendra and V.K. Verma, Heterocycles, 27, 2373 (1988).
- 8. Yonemoto, Kastami, Shibuya, Isao, Honda and Kazumasa, Bull. Chem. Soc. (Japan), 61, 232 (1988).
- 9. C.S. Bhaskar, N.N. Vidhale and B.N. Berad, Asian J. Chem., 14, 162 (2002).
- 10. R.S. Deshmukh and B.N. Berad, Indian J. Heterocycl. Chem., 11, 153 (2002).
- 11. G. Ottman and H. Hook, J. Org. Chem., 31, 838 (1966).
- N.B. Colthup, L.H. Daly and S. Wiberly, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York (1964).