Investigation of Angular Distribution of K Shell X-rays-A New Approach

K.S. KAHLON* and K.S. MANN

Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal-148106, India Email: kshahlon64@yahoo.com

Measurement of differential K shell X ray intensity ratios, $\frac{I(K_a)}{I(K_{\theta})}$

for Copper and Gadolinium at 60° - 100° has been reported. A new approach has been developed to know quantitatively the isotropy in K shell X-rays. The present results confirm the prediction of the calculations of Flugge *et al.*¹, Scofield², Berezhko *et al.*³ and Cooper and Zare⁴ that, after photoionization of inner shells, the vacancy states with J = 1/2 has equal population of magnetic sub states and the subsequent K shell X-ray emission is isotropic.

Key Words: K shell, X-rays, Angular distribution, Isotropy.

INTRODUCTION

Angular distribution of X-rays created by ion atom collisions has been widely studied. However in the case of photon atom collisions contradictory theories are existing. Cooper and Zare⁴ predicted that vacancy states produced after photoionisation with $j \ge 1/2$ are unaligned and thus X-rays emitted are isotropic and unpolarized. Flugge *et al.*¹, Scofield² and Berezhko *et al.*³ contradicted the above view and suggested that vacancy states produced after photoionisation of subshell with j > 1/2 are aligned and accordingly X-rays emitted are anisotropic and polarized. Thus both theories predicted that vacancies with J = 1/2 are unaligned and consequently X-rays emitted are isotropic.

Recently experiments have been performed by researchers of various laboratories $^{5-8}$ using unpolarized radiations to check the theories of Flugge $et\ al.^1$, Scofield, Berezhko $et\ al.^3$ and Cooper and Zare by using photon atom interactions. From these results no particular conclusion can be drawn, as some of the results favours the calculations of Flugge $et\ al.^1$, Scofield, Berezhko $et\ al.^3$ and other favours the result of Cooper and Zare. The experiments reported in this direction were the measurements of angular distribution of emission of L X-rays in some high Z elements. The results of Kahlon $et\ al.^5$, Sharma $et\ al.^6$ Ertugrul $et\ al.^7$ and Sabriye Seven $et\ al.^8$ support the view that vacancy states produced after photoionisation with vacancy $j \ge 3/2$ are aligned and are in agreement with the results of Flugge $et\ al.^9$, Scofield and Berezhko $et\ al.^8$.

The results of Puri et al. support the theory of Cooper and Zare which predicted that vacancy states with $j \ge 1/2$ produced by unpolarized

radiations are unaligned and consequently the X-rays emitted are isotropic and unpolarized in nature.

In order to explore the alignment of K shell vacancy states and provide a further check to the theoretical predictions of Cooper and Zare⁴, Flugge *et al.*¹, Scofield² and Berezhko *et al.*³, it is worthwhile to study the K shell X-ray intensities related to copper and gadolinium at 60° , 70° , 80° , 90° and 100° . A new method has been developed to investigate the angular distribution of K shell X-rays by measuring the intensity of $\frac{I(K_{\alpha})}{I(K_{\beta})}$ at different emission angles.

EXPERIMENTAL

The experimental set-up for measurement is described earlier in Kahlon et al.⁵. The ²⁴¹Am source and Gd or Mo targets were mounted on a movable arm which can rotate about an axis through the center of a graduated circular table and move the source and target together with respect to Si(Li) X-ray detector which is kept fixed. 60 keV γ -rays emitted from ²⁴¹Am source, of strength approximately 100 mCi, are collimated to fall on a 99.99% pure metallic foil of Gd or Mo. The angle of incidence was kept fixed at 70° while the angle of emission was varied to 60°-100° with intervals of 10°. The angular spread in the experimental setup was 2.5°.

When a target T of thickness t gm/cm² was irradiated with unpolarized photons from a source of strength S, fluorescent X-rays were emitted from it as a result of interaction of incident photons with the inner shell electrons of the atoms. The target elements under investigation were chosen in such a way that the energy of incident photons from source S be above their K shell threshold energies. Detector used in present setup has resolution of 300 eV at 6 keV and could separate out K_{α} and K_{β} X-rays group. It has been found that in addition to the emission of K X-rays there was scattering of 60 keV γ -rays from the target. However, the Si(Li) X-ray spectrometer used in the present measurements clearly separated the K X-ray from the scattered radiation.

The number of fluorescent K X-rays detected by the detector per unit time under the K ith X-ray peak is

$$N^{\theta}(Ki) = S_{r}a_{r}\omega_{1}\frac{\omega_{2}}{4\pi}\frac{d^{\theta}\sigma(K_{i})}{d\Omega}\frac{N}{M}\omega_{K}t_{K}\beta^{\theta}(K_{i})\varepsilon(K_{i})$$

$$\tag{1}$$

where $i = \alpha, \beta$. S_{γ} is the number of photons emitted from the source per unit time; ω_1 is the source-target solid angle, a_{γ} is the correction factor which takes into account the absorption of gamma rays in the source and the air column between the source and target; t_K is the

thickness of target in gm/cm², N/M is the number of atoms per gm of target material; $\beta^{\theta}(K_i)$ is the self absorption correction factor which takes into account the effect of absorption of incident gamma rays and emitted

3396 Kahlon et al.

K X-rays in the target at an emission angle θ . $\frac{d^{\theta}\sigma(K_i)}{d\Omega}$ is the

differential cross-section for the emission of K_i X-rays at angle θ ; $\frac{\omega_2}{4\pi}$ is

the target-detector solid angle and $\epsilon(Ki)$ is efficiency of the detector for the detection of the K ith X-ray under the photo peak.

From equation (1), the differential K X-ray emission cross-section at angle θ is given by

$$\frac{d^{\theta}\sigma(K_{i})}{d\Omega} = I^{\theta}(Ki) = \frac{N^{\theta}(Ki)}{\frac{N}{M}\omega_{K}t_{K}\beta^{\theta}(K_{i})\varepsilon(K_{i})S_{\gamma}a_{\gamma}\omega_{1}\frac{\omega_{2}}{4\pi}}$$
(2)

It is seen from equation (2) that determination of $\frac{d^{\theta}\sigma(K_{i})}{d\Omega}$ requires the

knowledge of various physical parameters relating to gamma ray source, target and X-ray spectrometer e.g. absolute source strength S, the solid

angles ω_1 and $\frac{\omega_2}{4\pi}$, the efficiency of the detector $\varepsilon(K_i)$, the self

absorption correction factor $\beta^{\theta}(K_i)$, parameters of the target (N/M) and number of K shell fluorescent X-rays detected by the X-ray spectrometer per unit time, is required.

The accuracy of the measurement of differential K X-ray emission cross-section at any angle θ i.e., $\frac{d^{\theta}\sigma(K_i)}{d\Omega}$ wass obviously limited by the

uncertainties involved in the determination of these parameters. However, the accuracy of the measurements was improved by measuring the relative K X-ray emission intensities. The ratio of K X-ray intensity ratios measured at emission angle θ is therefore given by

$$\frac{I^{\theta}(K_{\alpha})}{I^{\theta}(K_{\beta})} = \frac{N^{\theta}(K\alpha)}{N^{\theta}(K\beta)} \frac{\beta^{\theta}(K_{\beta})}{\beta^{\theta}(K_{\alpha})} \frac{\varepsilon(K_{\beta})}{\varepsilon(K_{\alpha})}$$

Thus the intensity ratios can be measured at various emission angles θ by determining the ratio of self-absorption correction factors of target $\frac{\beta^{\theta}(K_{\beta})}{\beta^{\theta}(K_{\alpha})}$, area under K_{α} and K_{β} peaks $\frac{N^{\theta}(K\alpha)}{N^{\theta}(K\beta)}$ and efficiency of detector

 $\frac{\varepsilon(K_{\beta})}{\varepsilon(K_{\alpha})}$. Efficiency ratios $\frac{\varepsilon(K_{\beta})}{\varepsilon(K_{\alpha})}$ are dependent only on energy and are

Vol. 18, No. 5 (2006)

angle independent. Thus variation of K X-ray intensity ratios depends only upon $\frac{N^{\theta}(K\alpha)}{N^{\theta}(K\beta)}$ and $\frac{\beta^{\theta}(K_{\beta})}{\beta^{\theta}(K_{\alpha})}$. The values of $\frac{N^{\theta}(K\alpha)}{N^{\theta}(K\beta)}$ at different

angles θ were determined experimentally, while the values of $\frac{\beta^{\theta}(K_{\beta})}{\beta^{\theta}(K_{\alpha})}$ are

calculated from the known photon absorption coefficients given by Hubbel et al. 10. The ratios of $\frac{\beta^{\theta}(K_{\theta})}{\beta^{\theta}(K_{\theta})}$ are calculated by using equation

$$\beta = \frac{1 - \exp\left[-\left(\frac{\mu_i}{\cos \theta_1} + \frac{\mu_e}{\cos \theta_2}\right)t_K\right]}{\left(\frac{\mu_i}{\cos \theta_1} + \frac{\mu_e}{\cos \theta_2}\right)t_K}$$

where μ_i and μ_e are photon absorption coefficients at incident gamma ray and emitted K X-ray energies respectively.

It has been seen that ratios of value of self-absorption correction factor $\frac{\beta^{\theta}(K_{\beta})}{\beta^{\theta}(K_{\alpha})}$ is not varying with angle and is shown in table I.

In view of above it is found that the variation of ratio of K X-ray intensity ratios $\frac{I^{\theta}(K_{\alpha})}{I^{\theta}(K_{\beta})}$ measured at emission angle θ depends only

upon $\frac{N^{\theta}(K\alpha)}{N^{\theta}(K\beta)}$. To measure the ratio of counting rates $\frac{N^{\theta}(K\alpha)}{N^{\theta}(K\beta)}$ targets

of Gd and Mo were irradiated with 59.97 keV unpolarized photons in the experimental setup and emitted K shell X-rays were detected at different emission angles by rotating the source target assembly. The experiment with each target was run for long time in order to have statistical accuracy < 1% for K_{α} and K_{β} peaks.

RESULTS and DISCUSSION

The measured values of K shell intensity ratios, $\frac{I^{\theta}(K_{\alpha})}{I^{\theta}(K_{\beta})}$, for Gd and

Mo at angles, 60° , 70° , 80° , 90° and 100° are shown in table 1. No experimental data were available for comparison with present results. The errors in the present measurements were $\approx 1.5\%$ and were due to uncertainty in counting statistics only. It has been seen that K shell X-rays intensity ratios were not varying with angle and therefore K shell vacancy states were unaligned and x ray emission is isotropic in nature. These results favours the predictions of Cooper and Zare⁴, Flugge *et al.*¹, Scofield² and Berezhko *et al.*³ that after photoionization the vacancy states for J = 1/2 are not aligned and X-ray emission is therefore isotropic.

The present method has never been reported before and is useful in quantitatively prediction of isotropy of K shell X-rays. In present method variation of intensity ratios depends only upon $\frac{N^{\theta}(K\alpha)}{N^{\theta}(K\beta)}$ and

therefore uncertainly involved in the experiment is decreased considerably.

TABLE-1
VARIATION OF SELF-ABSORPTION CORRECTION FACTOR
AND COUNTING RATES WITH EMISSION ANGLE
(THE TERMS IN BRACKETS ARE ERRORS)

Emission	Gd		Mo	
angle	$\beta^{\theta}(K_{\beta})$	$N^{\theta}(K\alpha)$	$\beta^{\theta}(K_{\beta})$	$N^{\theta}(K\alpha)$
(θ)	$\overline{\beta^{\theta}(K_{\alpha})}$	$\overline{N^{\theta}(K\beta)}$	$\overline{\beta^{\theta}(K_{\alpha})}$	$N^{\theta}(K\beta)$
60°	0.98	3.31(0.05)	0.94	5.09(0.07)
70°	0.98	3.38(0.05)	0.94	4.62(0.07)
80°	0.98	3.37(0.05)	0.94	4.66(0.07)
90°	0.98	3.33(0.05)	0.94	5.12(0.07)
100°	0.98	3.39(0.05)	0.93	4.78(0.07)

ACKNOWLEDGEMENTS

Authors are thankful to Prof. K.L. Allawadhi and Prof. B.S. Sood for the encouragement and time-to-time help.

REFERENCES

- 1. S. Flugge, W. Mehltron and V. Schmidt, Phys. Rev. Lett., 7, 29 (1972).
- 2. J.H. Scofield, Phys. Rev. A, 14, 1418 (1976).
- 3. E.G. Berezhko, N.M. Kabachnik and V.S. Rostowsky J. Phys. B. At. Mol. Opt. Phys., 11, 1749 (1978).
- 4. J. Cooper and R.N. Zare, Atomic Collision Processes, vol. 89, (New York: Gordon and Breach)
- 5. K.S. Kahlon, H.S. Aulakh, N. Singh, R. Mittal, K.L. Allawadhi and B.S. Sood, *Phys. Rev. A*, **43**, 1455 (1991).
- 6. J.K. Sharma and K.L. Allawadhi, J. Phys. B. At. Mol. Opt. Phys., 32, 2343 (1999).
- 7. M. Ertugrul, Nuclear Instuments and Methods B, 119, 345 (1996).
- 8. S. Seven and K. Kocil, X-ray Spectrometry, 31, 75 (2002).
- 9. S. Puri, D. Mehta, J.S. Shahi, M.L. Garg, N. Singh and P.N. Trehan, *Nuclear Instuments and Methods B*, 19, 152 (1999).
- 10. J.H. Hubbel and S.M. Seltzer, NISTIR 5632 Report (1997).