Asian Journal of Chemistry

Investigation of Heavy Metals Pollution along the Nigde-Kayseri Road, Turkey

M. GURHAN YALCIN* and RIFAT BATTALOGLU[†] Department of Geological Engineering, Faculty of Engineering and Architecture Nigde University, 51200 Nigde, Turkey E-mail: gurhan46@nigde.edu.tr; gurhan46@gmail.com

> The study area comprises the D765 state road connecting Nigde and Kayseri cities in the central Anatolia. The aim of this study is to determine the heavy metal contamination in off roadside soils along the D765 state road. Heavy metal concentrations were measured with Spectro-Xepos Benchtop X-Ray Fluorescence Spectrometer. Results of heavy metal analyses on soil samples reveal a significant contamination. Average heavy metal concentrations and standard deviations of samples collected from off roadside soils along the D765 state road are as follows: As: 27.90 (7.64), Cd: 3.99 (0.35), Co: 35.80 (2.19), Cr: 158.33 (46.27), Cu: 48.37 (24.73), Fe: 31516.83 (6545.26), Mn: 771.83 (121.41), Mo: 28.52 (5.51), Ni: 118.11 (27.90), Pb: 107.48 (37.90), Sn: 6.34 (1.35), Ti: 3369.87 (1172.44) Zn: 135.64 (32.42) mg/kg. In this study, among the heavy metals, As, Cd, Co, Cr, Mo, Ni and Pb are toxic metals. Heavy metal accumulations in soil were determined to be closely associated with traffic intensity.

> Key Words: Heavy metal, Toxic, Traffic Nigde, Kayseri, Soil contamination.

INTRODUCTION

The D765 state road in central Anatolia is the only road connecting the Nigde and Kayseri cities from southern part to central part of Turkey (Fig. 1). Therefore, D765 state road is one of the most important roads in the region. Since the D765 road between the Nigde and Kayseri cities also extends through two towns of the Kayseri city, it has an intense traffic load. Therefore, D765 state road has a special importance by means of environmental pollution.

Heavy metals due to various reasons are accumulated in soil along the roads. This accumulation is the main indicator for contamination¹⁻⁴. The concentrations of heavy metal accumulation in off roadside soils were compared with concentrations of these metals in the earth crust and acceptable

[†]Department of Chemistry, Faculty of Science and Arts, Nigde University, 51200 Nigde, Turkey.

2258 Yalcin et al.

limits in Turkey (Table-1). In this respect, heavy metal accumulation in off roadside soils along the D765 state road was determined. Among these metals, Fe, Cu, Pb, Zn, Cd, Ni, Cr, Co, Mn, Ti, Sn, Mo and As are the important pollutants.

Fig. 1. Study area and sampling map

Heavy metal concentrations in the environment negatively affect the brain activities and behaviours of humans¹¹. Therefore, investigation of heavy metal accumulation along the D765 state road was selected as the topic of this research. Heavy metals may be derived from traffic, industrial activities and home wastes^{4,12-14}. The maximum Pb concentration in off roadside soils is observed in ramps, oil stations, junctions and repair sites^{4,15}. In addition, heavy metals are also found in repair sites at both sides of a road under heavy traffic.

Vol. 19, No. 3 (2007) Heavy Metals Pollution along the Nigde-Kayseri Road, Turkey 2259

Metals	Concentration in soil	Concentration in shale (mg/kg) ⁹	Concentration in the earth crust (mg/kg) ⁹	Acceptable limit in Turkey (mg/kg) ¹⁰							
Fe	2.1×10^{4} **	$4.7 imes 10^4$	$5.4 imes 10^4$	-							
Cu	15**	50	50	50							
Pb	17**	20	12.5	50							
Zn	36**	90	70	150							
Cd	0.1-0.5*	0.3	0.15	1							
Ni	17**	80	75	30							
Cr	43**	100	100	100							
Co	10**	20	20	20							
Mn	320**	850	1000	_							
Ti	_	4500	5000	_							
Sn	10***	6	2.5	20							
Mo	2.5***	2	1.5	10							
As	7.5**	10	1.8	20							
Al	14.7#	$9.2 imes 10^4$	$8.1 imes 10^4$	_							

TABLE-1 ABUNDANCE OF HEAVY METALS IN THE EARTH CRUST AND THEIR ACCEPTABLE LIMITS

*Ref. 5, **Ref. 6, ***Ref. 7, #Ref. 8

The close relation between heavy metal concentrations such as Pb and repair sites, heavy traffic and ramps was investigated by various workers^{4,16-21}. Cu, Fe, Cr and Zn elements in off roadside soils are the main materials of various alloys, pipe, cable and tire in a car²². Ni in gasoline and Cd and Zn in tires and motor oils were determined to be high concentrations in several other works^{23,24}.

Recent studies indicate that environmental pollution along the heavytraffic roads is an important problem. The aim of this study is to investigate the heavy metal pollution in off roadside soils along the D765 road which connects the Nigde and Kayseri cities.

EXPERIMENTAL

The city of Nigde in central Anatolia has a population of about 350,000 and a population density of 45 person/km². The population of Kayseri city, which is an important industrial and trade center in central Anatolia, is approximately 1,000,000 and population density is 62 person/km².

In this study, heavy metal pollution (Fe, Cu, Pb, Zn, Cd, Ni, Cr, Co, Mn, Ti, Sn, Mo and As) was examined in the upper soil layer along the D765 road of 116 km connecting the Nigde and Kayseri cities. In 2004, daily total vehicle intensity²⁵ on this road was 3571.

2260 Yalcin et al.

Asian J. Chem.

Along the D765 road profile, metamorphic rocks of the Nigde massive are observed until the Nigde exit. In the following part towards to Kayseri, alluvium deposits of sand, clay and silts of Neogene and Pliocene age are traced. Metamorphic rocks of the Nigde massive are made of gneiss, schist, marble and quartzite alternations²⁶.

Sampling and analyses

Soil sampling was conducted in the November-2005 period. A total of 23 soil samples⁴ of 20 g were systematically collected from a depth of 5-10 cm about 5-10 m distance from the road side at every 5 km along the D765 road from Nigde to Kayseri.

All soil samples were collected with plastic sample shovel and stored in plastic containers for analyses. Samples were heated at 105°C for 24 h to avoid of humidity. Dried samples were sieved through 2 mm plastic sieve and thus separated from conglomerates. Sample containers were carefully²⁷ handled during the collection, storing, drying and sieving of samples to prevent from a possible contamination.

In the next stage, samples were homogenized²⁷ with an agate mortar to a grain size of less than 2 mm. The mortar was washed with HNO₃ and rinsed with distilled water before the each sample process. Double sided film tablet of 32 mm diameter was prepared from each sample. Measurements on sample tablets for Fe, Cu, Pb, Zn, Cd, Ni, Cr, Co, Mn, Ti, Sn, Mo and As elements were carried out with Spectro Xepos Benchtop X-Ray Fluorescence spectrometer²⁷. Detection system is drift detector with Peltier cooling, energy resolution FWHM < 170 eV, measured for the MnK_{α} line with an input count vote of 10,000 pulses, Microprocessor controlled detector and electronics.

RESULTS AND DISCUSSION

The heavy metal concentrations and averages for off roadside soils collected from the D765 road are determined as follows (mg/kg) (Tables 2 and 3); As: 27.90 (\pm 7.64), Cd: 3.99 (\pm 0.35), Co: 35.80 (\pm 2.19), Cr: 158.33 (\pm 46.27) Cu: 48.37 (\pm 24.73), Fe: 31516.83 (\pm 6545.26) Mn: 771.83 (\pm 121.41), Mo: 28.52 (\pm 5.51) Ni: 118.11 (\pm 27.90), Pb: 107.48 (\pm 37.90), Sn: 6.34 (\pm 1.35), Ti: 3369.87 (\pm 1172.44) and Zn: 135.64 (\pm 32.42).

General overview of results for the D765 state road reveals that average concentrations of As, Cd, Co, Cr, Mo, Ni and Pb exceed the abundance of these elements in the earth crust, soil and shale and also that required by the National soil pollution control regulation and therefore, they have a toxic character. The average concentration of Cu exceeds the limit value for soils but it is lower than its abundance in the earth crust, shale and National soil pollution control regulation.

AYSERI ROAD	Location	Between Bus station and Ata Industrial site	Entrance to the Gümüşler town	Before the Aktaş town	Nevşehir road junction	Following the Çamardi road junction. 2 nd km	Around Hüyük	Entrance to Arapli, 1 km before	Arapli exit	Yahyali road junction	Entrance to Yeşilhisar	Yeşilhisar exit 2 nd km	Nevşehir road junction across the oil station	Bend	Junction		incesu entrance 1 km	İncesu exit 2 km		Entrance to Boğazköprü	Between the Boğazköprü and Industry site	Industry site	Belsin	Around the Kayseri bus station				
NIGDE-	Zn	166.2	102.5	132.6	200.8	159.7	165.3	147.2	132.5	100.8	82.5	144.9	111.4	88.4	142.8	189.4	147.5	124.6	100.4	182.5	147.6	124.6	99.8	125.8	88.4	200.8	32.42	135.64
E D765]	Τi	2256	2004	3369	2258	1952	2002	3698	1852	2698	3568	3005	3215	5487	3269	3987	2547	4521	6587	4215	3987	3259	3669	4102	1852	6587	1172.44	3369.87
HT ÐN	Sn	6.1	7.8	8.5	4.2	6.8	5.5	7.2	8.0	7.2	6.5	4.2	3.3	5.6	6.9	6.9	5.7	6.1	4.8	7.1	8.5	6.9	5.8	6.2	3.3	8.5	1.35	6.34
TABLE-2 JLLECTED ALO	$^{\mathrm{Pb}}$	132.2	100.1	188.4	98.4	205.1	88.4	65.5	122.6	136.1	87.2	108.2	69.5	88.2	65.3	35.2	142.5	106.9	122.2	98.7	88.5	98.6	125.6	98.7	35.2	205.1	37.90	107.48
	Ni	98.4	125.6	100.5	115.4	99.4	168.9	147.8	132.5	136.9	140.5	178.6	147.8	84.5	72.1	100.9	85.7	123.5	111.7	82.4	102.6	98.7	125.7	136.5	72.1	178.6	27.90	118.11
PLES CO	Мо	32	28	25	26	26	30	28	26	21	13	29	35	25	26	29	24	31	36	39	30	36	32	29	13	39	5.51	28.52
DF SAMI	Mn	647	749	601	877	654	742	852	1126	800	741	662	852	521	745	801	765	741	722	763	852	925	825	789	521	1126	121.41	771.83
RESULTS OF ANALYSES O	Fe	41588	38512	22984	30256	21422	36410	26201	30020	21762	39331	32158	23145	31269	22500	32668	38499	43251	32144	30258	38789	32566	30588	28566	21422	43251	6545.26	31516.83
	Cu	46.5	51.2	18.6	65.5	88.7	100.8	87.5	65.8	42.2	22.1	45.9	40.1	38.2	27.4	22.5	88.4	36.4	62.3	51.1	12.4	25.6	34.8	38.5	12.4	100.8	24.73	48.37
	Cr	255.8	200.4	176.4	182.5	125.4	99.2	156.4	100.6	122.7	168.6	147.5	169.4	71.9	157.8	200.6	168.7	234.9	141.1	187.7	200.9	168.7	82.4	122.1	71.9	255.8	46.27	158.33
	Co	32.5	11.4	35.8	40.1	58.9	50.4	35.8	39.4	41.8	42.9	31.6	11.7	25.8	36.9	42.8	9.2	36.8	52.5	41.5	32.5	28.9	48.7	35.6	9.2	58.9	2.19	35.8
	Cd	4.1	5.1	4.2	4.3	3.8	1.6	3.2	3.8	3.0	3.6	3.1	4.9	5.4	3.5	3.6	3.8	5.6	3.5	4.1	2.6	6.5	4.9	3.6	1.6	6.5	0.35	3.99
	As	12.7	45.1	36.5	30.5	25.8	27.2	33.3	27.0	31.9	30.8	28.8	40.0	22.5	17.8	25.9	27.2	32.5	26.8	22.4	30.5	11.4	28.9	26.2	11.4	45.1	7.64	27.9
		NK1	NK2	NK3	NK4	NK5	NK6	NK7	NK8	NK9	NK10	NK11	NK12	NK13	NK14	NK15	NK16	NK17	NK18	NK19	NK20	NK21	NK22	NK23	Min	Max	SD	Mean

Vol. 19, No. 3 (2007) Heavy Metals Pollution along the Nigde-Kayseri Road, Turkey 2261

226	2 Yalci	n et al.									Asi	an J. C	hem		
	TABLE-3 ELEMENT CORRELATIONS IN SOILS ALONG THE NIGDE-KAYSERI ROAD														
	As	Cd	Со	Cr	Cu	Fe	Mn	Мо	Ni	Pb	Sn	Ti	Zn		
As	1														
Cd	-0.082														
Co	-0.261	-0.381	1												
Cr	0.018	0.172	-0.296	1											
Cu	0.055	-0.340	0.136	-0.280	1										
Fe	-0.077	0.087	-0.218	0.459(*)	-0.047	1									
Mn	0.040	0.005	-0.020	-0.052	0.072	-0.041	1								
Мо	-0.233	0.257	-0.025	0.181	0.029	0.037	0.128	1							
Ni	0.461(*)	-0.348	0.069	-0.239	0.242	0.033	0.203	-0.109	1						
Pb	0.023	0.045	0.219	-0.122	0.236	-0.194	-0.271	-0.141	-0.147	1					
Sn	0.000	-0.078	0.102	0.129	-0.246	-0.016	0.149	-0.213	-0.334	0.183	1				
Ti	-0.092	0.165	0.135	-0.069	-0.358	0.057	-0.286	0.279	-0.225	-0.262	-0.135	1			
Zn	-0.272	-0.309	0.191	0.368	0.304	0.004	0.117	0.258	-0.181	-0.076	-0.001	-0.343	1		
Correlation is significant at the 00.05 level (2-tailed), $r_{Ni-As} = 0.461$ [sig(2-ta) = 0.027,															

 $\alpha = 0.05$, N = 23] and r_{Fe-Cr} = -0.459 [sig(2-ta) = 0.028, $\alpha = 0.05$, N= 23]

The average concentrations of Fe and Mn exceed the limit value for soils but are lower than its abundance in the earth crust and shales. The average concentration of Sn exceeds the limit values of the earth crust and shales but is lower than its abundance in soils and National soil pollution control regulation. The average concentration of Ti does not exceed its abundance in the earth crust and shales. The average concentration of Zn exceeds the limit values of soil, shale and the earth crust but is lower than its abundance for National soil pollution control regulation (Table-2).

As shown from Table-2, in soil samples along all the studied profile, Pb accumulation is the maximum in NK5, As is the maximum in NK2, Cd is the maximum in NK21, Co is the maximum in NK5, Cr is the maximum in NK1, Mo is the maximum in NK19 and Ni is the maximum in NK11.

On the basis of results of analyses conducted on soil samples and correlation relations among the metals, positive correlations were detected between Ni & As and Fe & Cr. Correlation coefficients among these metals were calculated as r_{Ni-As} =0.461 [sig(2-ta) = 0.027, α = 0.05, N = 23] and r_{Fe-Cr} =-0.459 [sig(2-ta) = 0.028, α = 0.05, N = 23] (Table-3). Similarly, on the basis of correlations among the metals, it was thought that metals with moderately positive correlations have the same possible pollution sources.

According to heavy metal contents of samples collected at 23 stations along the route, Hierarchical cluster analysis dendogram was drawn considering the distance coefficient. NK3, NK12, NK14, NK5 and NK9 stations have similar characteristics. Moreover, NK13 and NK18; NK11,

Vol. 19, No. 3 (2007) Heavy Metals Pollution along the Nigde-Kayseri Road, Turkey 2263

Fig. 2. Hierarchical cluster analysis dendogram for soil samples along the Nigde-Kayseri road

NK21 and NK15; NK4, NK8, NK19, NK22 and NK23; NK2, NK16, NK10 and NK20 stations also show similar characteristics. It was determined that the stations with similar features have also similar element contents. In this respect, it is thought that there is no different change along the route and the source of pollution is completely derived from intense traffic load (Fig. 2).

According to heavy metal contents investigated along the selected route, all the public open parks, schools and game sites around the D765 road are needed to be rebuilt. Residential sites should be rearranged. In general, in order to reduce the heavy metal contamination, the priority must be given to railway transportation. In establishment of new settlement areas and roads, the effect of traffic-based pollution should be taken into account. The use of unleaded oil products and LPG are needed to be encouraged.

Asian J. Chem.

REFERENCES

- 1. N.F.Y. Tam, W.K. Liu, M.H. Wang and Y.S. Wong, *Sci. Total Environ.*, **59**, 325 (1987).
- N. Yassoglou, C. Kosmas, J. Asimakopoulos and C. Kallianou, *Environ. Pollut.*, 47, 293 (1987).
- 3. A.A. Olajire and E.T. Ayodele, *Environ. Int.*, **28**, 91 (1997).
- 4. M.S. Öncel, V. Zedef and S. Mert, J. Fresenius Bull., 13, 1525 (2004).
- J.B. Maynard, Geochemistry of Sedimentary Ore Deposits, Springer-Verlag, New York, pp. 89-119 (1983).
- K.L. Wedepohl, Handbook of Geochemistry, Springer Verlag, Berlin, Vol. 1, p. 442 (1969-1978).
- 7. J.J. Connor and H.T. Shacklette, U.S. Geol. Survey, paper 574-F, p. 164 (1975).
- 8. R.R. Brooks, Geobotany and Biogeochemistry in Mineral Exploration, Harper and Row, New York, p. 290 (1972).
- 9. K. Krauskopf, Introduction to Geochemistry, McGraw-Hill Book Company (1979).
- Toprak Kirliliginin Kontrolü Yönetmeligi, 2005 tarih ve 25831 sayili Resmi Gazete, 31 Mayis, Ankara.
- 11. A.J. McMichael, P.A. Baghurst, E.F. Robertson, G.V. Vimpani and N.R. Wigg, *Med. J. Aust.*, **143**, 499 (1985).
- K.N. Dietrich, P.A. Succop, R.L. Bornschein, K.M. Kraft, O. Berger, P.B. Hammond and C.R. Buncher, *Environ. Health Perpect.*, 89, 13 (1990).
- D.J. Davies, I. Thornton, J. Watt, E.B. Culbard, P.G. Harvey, H.T. Delves, J.C. Sherlock, G.A. Smart, J.F. Thomas and M.J. Quinn, *Sci. Total Environ.*, **90**, 13 (1990).
- 14. J. Watt, I. Thornton and J. Cotter-Howells, Appl. Geochem., Sup. 2, 269 (1993).
- 15. B. Viard, F. Pihan, S. Promeyrat and J.C. Pihan, Chemosphere, 55, 1349 (2004).
- 16. X. Li, C. Poon and P.S. Liu, Appl. Geochem., 16, 1361 (2001).
- 17. S. Gromov and E. Emelina, Sci. Total Environ., 15, 135 (1994).
- 18. S.M. Ross, Toxic Metals in Soil-Plant Systems, Wiley, Chichester (1994).
- 19. S. Shallari, C. Schwartz, A. Hasko and J.L. Morel, Sci. Total Environ., 209, 133 (1998).
- 20. H. Zhang, D. Ma, Q. Xie and X. Chen, Environ. Geol., 38, 223 (1999).
- 21. D.G. Turer and B.J. Maynard, Clean Technol. Environ. Policy, 4, 235 (2003).
- 22. Y.B. Ho and K.M. Tai, Environ. Pollut., 49, 37 (1988).
- 23. A. Carlosena, J.M. Andrade and D. Prada, Talanta, 47, 753 (1998).
- 24. H. Arslan, J. Fresenius Environ. Bull., 10, 405 (2001).
- 25. Trafik yogunlugu, Karayollari 6.Bölge Müdürlügü, 2004 yili ortalama günlük trafik yogunlugu, p. 1, Nigde (2004) (in Turkish).
- 26. M.G. Yalçin, Gümüsler (Nigde) Bölgesi Polimetalik Antimuan-Civa Cevherlesmesinin Mineralojisi ve Jeokimyasal Incelemesi, Ph. D. Thesis, Adana, p. 165 (1995) (in Turkish; unpublished).
- M.G. Yalcin, R. Battaloglu, S. Ilhan, A. Tümüklü and D. Topuz, Asian J. Chem., 19, 1506 (2007).

(Received: 12 June 2006; Accepted: 31 October 2006) AJC-5243