Synthesis of Some Functionalized Pyridazino[4,5-d]pyridazine Derivatives

AVAT (ARMAN) TAHERPOUR*, ZAHRA SHARIFNEZHAD, FROUGH AZAM SOUFALI and KHOJASTEH KHERADMAND

Chemistry Department, Faculty of Science, Islamic Azad University P.O. Box 38135-567, Arak, Iran E-mail: avat_1@yahoo.co.uk

The condensation reactions between ninhydrin and 1,3-dione compounds are one of the type extended reactions in various conditions. Compounds 1-3 were synthesized via the condensation of ninhydrin with barbituric acid, 1,3-dimethyl barbituric acid and 4-cyclopenten-1,3-dione in presence of sodium hydroxide and in Et-OH/H₂O as solvent (in good yield). Compounds 4-6 as functionalized pyridazino[4,5-d]pyridazine derivatives could be made by simple reaction of 1-3 with hydrazine in very good yields. These compounds 1-3 and 4-6 show fluorescent properties.

Key Words: Heterocycles, Ninhydrin, 1,3-Diones, Pyridazino-[4,5-d] pyridazine, Fluorescent compounds.

INTRODUCTION

The reactions of ninhydrin and 1,3-dione compounds are one of the condensation types extended process in various conditions. The reactions of solid-solid, gas-solid, and solution states of ninhydrin with some of the 1,3-diones such as dimedone have already been investigated¹⁻⁴.

Here we report the synthesis of compounds **1-3**. These compounds **1-3** were produced by condensation of ninhydrin with barbituric acid, 1,3-dimethyl barbituric acid and 4-cyclopenten-1,3-dione (in good yields).

The standard method of synthesis of the pyridazine ring is the action of hydrazine on compounds 1,4-dicarbonyl or their equivalent. Saturated 1,4-diketones give dihydropyridazines which are easily oxidized to the aromatic compounds, but 2,3-unsaturated-1,4-diketones give the aromatic ring system directly^{5,6}.

It is reported that, first, pyridazino[4,5-d]pyridazine was obtained by Gault *et al.*⁷ Entire data about the synthesis and reactivity of this heterocyclic system are due to Singermann and Castle⁸. Several studies were reported earlier regarding the reaction of ninhydrin and barbituric acid derivatives^{9,10}.

These reports described the preparation of a number of pyridazino[4,5-d]pyridazine derivatives¹¹⁻¹⁴. Compounds **4-6** as functionalized heterocyclic compounds, were produced by a simple synthesis of the reaction between **1-3** and hydrazine monohydrate (in very good yields). Both groups of compounds **1-3** and **4-6** show fluorecent properties. The fluorescent dyestuffs are used in making daylight products¹⁵.

EXPERIMENTAL

Melting points were measured on Electrothermal apparatus. Elemental analyses were performed by using a Metler Toledo HR73 CHN analyser. The FT-IR spectra were recorded on a Shimadzu FT-IR 8000 spectrometer. The ¹H and ¹³C NMR spectra were measured with Brüker 500 MHz spectrometer at 500 and 125.7 MHz, respectively. Mass spectra were recorded on a GC-MS QP-1100EX Shimadzu mass spectrometer operating at an ionization potential of 70 eV.

Typical procedure

The synthesis and purification of 5-(2-hydroxy-1,3-dioxo-indan-2yl)-pyrimidine-2,4,6-trione (compound **1**) and 1,3-dihydro-1,3,4,5,10,11-hexaaza-benzo[cd]fluoranthen-2-one (compound **2**) as typical procedures were explained.

Preparation and Purification of 5-(2-hydroxy-1,3-dioxo-indan-2-yl)-pyrimidine-2,4,6-trione (compound 1): A solution of sodium hydroxide (3 mL, 1 N) was added dropwise to a magnetically stirred solution of ninhydrin (0.01 mol) in H₂O (15 mL) and barbituric acid (0.01 mol) in ethanol (15 mL), at room tempreature for 2 h. A yellow solid was collected by filtration after evaporation of the solvent. Recrystallization from water yielded compound **1** as yellow crystals yield 90 %, m.p. = 168-170°C; ν_{max} (KBr, cm⁻¹): 3645 ν(O–H, Free); 3429 ν(N–H); 3020, 3217 ν(Ar-H); 1751, 1716, 1689 ν(C=O groups) and 1639, 1547, 1458 ν(C=C). ν_{max}/nm (in H₂O): 235.5 (2.6). MS (m/z, %): 289 (M+1, 2), 288 (M, 10), 270 (M-18, 4.5), 147 (85), 128 (12.5), 104 (22), 76 (27.5), 44 (100), 43 (86.25). Elemental analysis C₁₃H₈N₂O₆ calcd. (%): C (54.17), H (2.78), N (9.72), O (33.33); Found: C (54.25), H (2.55), N (9.9) and O (33.40). δ_H(D₂O): 4.70-4.73 (2H), 7.8-7.9 (4H, Ar-H, AA'BB' system). δ_C(D₂O): 77.2 (C₅'), 84 (C₂), 124, 137.6, 140.5 (C_{Ar}), 153.4 (C₂'), 166.4 (C₄',C₆') and 202.6 (C₁, C₃), yield 90 %.

Preparation and Purification of 1,3-dihydro-1,3,4,5,10,11-hexaazabenzo[cd]fluoranthen-2-one (compound 4): Add hydrazine (0.02 mol) to compound 1 (0.01 mol) in a 50 mL beaker and stir for 1 h at room temperature. A red-orange solid was collected by filtration. Recrystallization from DMF yielded compound 4 as red-orange crystals (yield 92%, m.p. = 280-281°C, degraded in 285°C). v_{max} (KBr, cm⁻¹): 3549_{asym}, 3425_{sym}. v(N-H); 3186 v(Ar-H); 1728 v(C=O); 1675 v(C=N); 1659 v(C=C); 1512 ν (C=C, Ar); 1404 ν (NH, bending); 1370 ν (N-C-N, asym.); 1203 ν (N-C-N, Sym.); 810 v(C–H, bending or N–H wagging). v_{max}/nm (in Et-OH): 466.73 (1.35). MS (m/z, %): 262 (M-1, 3.75), 260 (M-2, 22.5), 259 (100), 258 (67.5), 215 (18.75), 144 (15.5), 76 (3.25), 44 (8.25), 43 (5) and 42 (10). For $C_{13}H_6N_6O$ the calculated percentage of elements (%) is: C (59.55), H (2.31), N (32.05), O (6.10); Found: C (59.67), H (2.20), N (31.99) and O (6.30). $\delta_{\rm H}$ (⁶d-DMSO): 6.70, 6.80, 8.40, 8.50 (4H, Ar-H, AX system), 10.9, 11.04 (2H, NH); $\delta_{\rm C}$ (d₆-DMSO): 109.5 (C_{11b}), 111.2 (C_{11c}), 119.9, 139.1, 150.3 (C_{Ar}), 154.6 (C_{5a}, C_{9b}), 155.3 (C_{3a}, C_{11a}), 164.59 (C₂), yield 92%.

RESULTS AND DISCUSSION

The structures of compounds **1-3** and **4-6** were deduced from their elemental analyses and their 1 H and 13 C NMR spectra as well as from IR spectra which exhibited strong C=O signals. The molecular ion peak is very weak in the mass spectra of compound **1**. The ion peak at m/z = 270 shows the omission of one H₂O molecule from compound **1**. The base peak of this compound was appeared in m/z = 44. The molecular ion peak of **4** is very weak. The base peak of **4** was appeared in m/z = 259.

TABLE-1 SELECTED DATA OF **1-6** (FT IR (cm $^{-1}$), NMR (d), λ_{max} (nm) AND MELTING POINT IN $^{\circ}C$)

Compounds 1-3	Compounds 4-6
1 m.p. =168-170 λ _{max} = 235.5 FT-IR: 3645 (O-H, Free); 3429 (N-H); 3020, 3217 (Ar-H); 1751, 1716, 1689 (C=O groups) and 1639, 1547, 1458 (C=C). ¹H NMR: 4.70-4.73 (2H), 7.8-7.9 (4H, Ar-H, AA'BB' system). ¹³C NMR: 77.2 (C ₅ '), 84 (C ₂), 124, 137.6, 140.5 (C _{Ar}), 153.4 (C ₂ '), 166.4 (C ₄ ',C ₆ ') and 202.6 (C ₁ , C ₃). Yield =90%.	4 m.p. = 280-281 $λ_{max}$ = 466.7 FT-IR : 3549 _{Asym} , 3425 _{sym} . (N-H); 3186 (Ar-H); 1728 (C=O); 1675 (C=N); 1659 (C=C); 1512 (Ar _{C=C}); 1404 (NH, bending); 1370 (N-C-N, Asym.); 1203 (N-C-N, Sym.);810 (C-H, bending or N-H wagging). ¹ H NMR : 6.70, 6.80, 8.40, 8.50 (4H, Ar-H, AX system), 10.9, 11.04 (2H, NH). ¹³ C NMR : 109.5 (C _{11b}), 111.2 (C _{11c}), 119.9, 139.1, 150.3 (C _{Ar}), 154.6 (C _{5a} , C _{9b}), 155.3 (C _{3a} , C _{11a}), 164.59 (C ₂). Yield =92%.
2 m.p. = 168-170 λ_{max} = 247.0 FT-IR : 3610 (O-H, Free); 3050, 3200 (Ar-H); 2850-2950 (C-H, alipha.); 1745, 1715, 1691 (C=O groups) & 1620, 1550, 1455 (Ar _{C=C}) ¹ H NMR : 2.8 (6H), 1.8 (1H); 7.8-7.9 (4H, Ar-H, AA'BB' system). ¹³ C NMR : 50 (CH ₃); 77.0 (C ₅ '); 84 (C ₂); 124, 138, 141(C _{Ar}); 152 (C ₂ '); 165 (C ₄ ',C ₆ ') and 201 (C ₁ , C ₃). Yield =90%.	5 m.p. = 277-279 λ_{max} = 478.0 FT-IR: 3150 (Ar-H); 1730 (C=O); 1680 (C=N); 1650 (C=C); 1512 (C=C, Ar); 1490, 1600 (Ar _{C=C}); 1390 (N-C-N, Asym.); 1198 (N-C-N, Sym.); ¹ H NMR: 3.0 (6H, 2Me); 6.7, 6.8, 8.4, 8.5 (4H,Ar-H, AX system). ¹³ C NMR: 55 (CH ₃); 108 (C _{11b}); 110 (C _{11c}); 119, 139, 150 (C _{Ar}), 153 (C _{5a} , C _{9b}), 155 (C _{3a} , C _{11a}), 163.0(C ₂). Yield =94%.
3 m.p. = 128-130 λ_{max} = 215.5 FT-IR: 3600 (O-H, Free); 3150-3200 (Ar-H); 3050 (=C-H); 1710, 1688 (C=O groups); 1610 (C=C); 1570, 1475 (Ar _{C=C}). ¹ H NMR: 6(2H); 7.5-7.6 (4H, Ar-H, AA'BB' system). ¹³ C NMR: 70.0 (C ₂ '); 82 (C ₂); 126, 133, 137(C _{Ar}); 122 (C ₄ ',C ₅ '); 160 (C ₁ ', C ₃ '); 202 (C ₁ , C ₃). Yield =92%.	6 m.p. = 207-209 λ_{max} = 495.0 FT-IR : 3125 (Ar-H); 3075 (=C-H); 1650 (C=N); 1615(C=C); 1475, 1600 (Ar _{C=C}). 1 H NMR : 6.5 (2H,s); 6.8, 6.9, 8.0, 8.1 (4H, Ar-H, AX system). 13 C NMR: 110 (C _{11b}); 111 (C _{11c}); 123, 138, 147 (C _{Ar}); 152 (C _{5a} , C _{9b}); 150 (C _{3a} , C _{11a}); 127(C ₁ ,C ₂). Yield =90%.

The 1H NMR spectrum of **1-3** displayed a multiplet readily recognizable as arising from the aromatic region (4H, $\delta = 7.8$ -7.9 ppm). The ^{13}C NMR spectrum of compounds **1-3** showed distinct resonances in agreement with the structure. The 1H NMR spectrum of compounds **4-6** exhibited the doublet of doublet pattern at $\delta = 6.7$, 6.8 and 8.4, 8.5 ppm readily recognizable as arising from the aromatic protons (AX system).

The ¹³C NMR spectrum of compounds **4** and **6** displayed eight signals in agreement with the symmetric structure of this compound. The compound **5** has nine signals in ¹³C NMR spectrum according to its symmetric form. Some information related to these results are illustrated in the experimental section and Table-1.

The structural information obtained on the base of the NMR spectra of the groups compounds **1-3** and **4-6** were supported by the measurements of their IR and UV spectra applied in interpreating the carbonyl absorption (1750-1690 cm⁻¹) in this compounds. The conjugation with the aromatic ring and functional groups, such as N–H in **1** and **4**, N–CH₃ in **2** and **5**, and C=C for **3** and **6**, appears to be a plausible factor in the reduction of the wave numbers of the carbonyl absorption bands¹⁶. Each of the λ_{max} in UV spectra of compounds **1-3** and **4-6** exhibited UV spectral bands (λ_{max}) at 235 (**1**), 247 (**2**), 260 (**3**), 467 (**4**), 478 (**5**) and 495 (**6**) and 467 nm.

Conclusion

The reactions described here are the simple and efficient synthesis of **1-3** compounds as a condensation product of ninhydrin with some of the 1,3-diones such as barbituric acid, 1,3-dimethyl barbituric acid and 4-cyclopenten-1,3-dione, also **4-6** are some fuctionalized derivatives of pyridazino[4,5-d]pyridazine. These compounds exhibit the fluorecent properties. It is shown that the compounds (**1-3**) are useful precursor for synthesis of compounds **4-6** with hydrazine. The one-pot synthesis and simple nature of the present procedures make an effective method to synthesize type **2** derivatives of **4-6**. The compounds **4-6** are insoluble in water insolubility of the compounds is an effective property in fluorecent dyes.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the Research Council of Science and Research Campus of Islamic Azad University, Sannandaj and Arak branches of I.A.U. and Dr. Khosrow Zamani for supporting this study.

REFERENCES

- 1. G. Kaupp, in ed.: J.E.D. Davise, In Comprehensive Supramolecular Chemistry, Elsevier, Oxford, Vol. 8, pp. 381-423 (1996).
- 2. N.P. Peet, E.W. Huber and J.C. Huffman, J. Heterocycl. Chem., 32, 33 (1995).
- 3. G. Kaupp, M.R. Naimi-Jamal and J. Schmeyers, *Chem. Eur. J.*, **8**, 594 (2002) and the references cited there in.
- 4. R.N. Castle, Pyridazines, Wiley-Interscience, New York (1973).
- T.L. Gilchrist, Heterocyclic Chemistry, Longman Scientific & Technical, UK, edn. 2, pp. 267-276 (1992).
- 6. W.V. Curran and A. Ross, J. Med. Chem., 17, 273 (1974).
- 7. H. Gault, G. Kolopissis, N. Rist and F. Grumbach, *Bull. Soc. Chem. (France)*, 916 (1954).

- 8. G.M. Singermann and R.N. Castle, J. Heterocycl. Chem., 4, 393 (1967).
- 9. A. Carotti, G. Casini and M. Ferappi, *Gazz. Chim. Italy*, **115**, 515 (1985).
- 10. J. Pelcere and G. Vanags, *Latvijas PSR Zinatnu Akademijas Vestis. Kimijas Serija*, **5**, 612 (1965).
- 11. S. Yurugi, S. Kikuchi, Shintaro (Tokeda Chemical Industries Ltd.) Japan Kokai, 73,34,198 (CI, E612), 16 May 1973, Appl. 71,68,415, 04 Sept. 1971; *Chem. Abstr.*, **79**, P32073y (1973).
- 12. A. Tueck, G. Queguiner and P. Pastour, J. Heterocycl. Chem., 15, 1081 (1973).
- 13. O. Migliara, S. Petruso and V. Spiro, J. Heterocycl. Chem., 17, 529 (1980).
- 14. N. Haider and C. Loll, J. Heterocycl. Chem., 31, 357 (1994).
- 15. Kirk and Othmer, Encyclopedia of Chemical Technology, edn. 4, Vol. 4 (1994).
- 16. R.M. Silverstein, G.C. Bassler and T. C. Morril, Spectrometric Identification of Organic Compounds, Wiley, New York, edn. 5, p. 111 (1991).

(Received: 1 February 2006; Accepted: 13 October 2006) AJC-5173