NOTE

Synthesis of 3,5-Diaryl-4-benzoyl-1-pyridoyl Pyrazoles by Oxidation of Pyrazolines using DMSO-I₂ Solvent

M.V. Kadu, R.E. Khadsan* and V.S. Jamode†
Department of Chemistry, Anuradha Engineering College
Chikhli-443 201, Buldana, India
E-mail: rek_4@rediffmail.com

Some new 3,5-diaryl-4-benzoyl-1-pyridoyl pyrazoles have been synthesized by the oxidation of pyrazolines, by using $\rm I_2$ in DMSO solvent. The structures of these compounds have been established by spectral analysis (IR, NMR and UV) and elemental analysis.

Key Words: Synthesis, Oxidation, Pyrazolines, 3,5-Diaryl-4-benzoyl-1-pyridoyl pyrazoles.

Literature survey reveals the importance of chalcones and flavanones as a valuable starting material for the synthesis of heterocycles like pyrazolines, pyrazoles, isoxazoles, *etc*. Formation of pyrazolines have been reported¹⁻³ by the action of hydrazine or phenyl hydrazines on chalcones and flavanones in solvents like DMSO, ethanol, *etc*.

Pyrazoles have been reported by oxidation of pyrazolines by chromic acid, potassium permangnate, silver nitrate, potassium ferricynide, lead oxide and manganese dioxide⁴. Nitro pyrazoles have been synthesized from nitro pyrazolines using DMSO-I₂ as a solvent⁵. Sharma *et al.*⁶ obtained pyrazoles form pyrazolines using lead tetra acetate as an oxidizing agent in benzene medium. Pyrazoles and their derivatives were prepared by the action of DMSO-I₂-H₂SO₄ and DMSO-I₂ system⁷ on pyrazolines and its derivatives. 1,3,5-Trisubstituted pyrazoles were prepared by the oxidation of pyrazolines using 1,3-dibromo-5,5-dimethyl hydantoin⁸. Pyrazole is a class of compounds which are widely used in drugs and dyes^{9,10}. These compounds also shows physiological activities¹¹⁻¹⁷.

Thus, it was thought of interest to study the reactions of 3,5-diaryl-4-benzoyl-1-pyridoyl- Δ^2 -pyrazolines with DMSO-I₂ system to yield pyrazoles.

[†]Pro-Vice Chancellor, Amravati University, Amravati-444 602, India.

3240 Kadu et al. Asian J. Chem.

Melting points are uncorrected. IR spectra in KBr was recorded on FT-IR spectrophotometer Schimadzu-8101, at Department of Pharmaceutical Sciences, Nagpur University, Nagpur. PMR spectra was recorded on AMX-400 MHz high resolution FT NMR spectrometer at Regional Sophisticated Instruments Center, Indian Institute of Sciences, Bangalore. The purity of the compounds was checked on Silica Gel-G coated plates.

Synthesis of 3,5-diaryl-4-benzoyl-1-pyridoyl- Δ^2 -pyrazolines (Ia-j): 3,5-Diaryl-4-benzoyl-1-pyridoyl- Δ^2 -pyrazolines were prepared by known method¹⁸.

Synthesis of 3,5-diaryl-4-benzoyl-1-pyridoyl pyrazoles (IIa-j): 3,5-Diaryl-4-benzoyl-1-pyridoyl- Δ^2 -pyrazolines (Ia-j) were suspended in DMSO (20 mL) and a crystal of iodine was added to it. The reaction mixture was refluxed for 1 h, cooled and diluted with water to get corresponding pyrazoles. It was then washed with 20 % sodium thiosulphate to remove iodine and finally washed with water and crystallized from ethanol-acetic acid mixture to obtained white crystalline solid (yield 60-80 %) (Table-1).

TABLE-1
PHYSICAL CHARACTERIZATION DATA OF
SYNTHESIZED COMPOUNDS

Compd.	R ₁	R ₂	R_3	R ₄	R ₅	m.f.	m.p.	% N Found (Calcd.)
IIa	-H	-H	-CH ₃	-H	-H	$C_{29}H_{21}N_3O_3$	252	8.9
								(9.1)
IIb	-H	-H	$-CH_3$	-H	-OCH ₃	$C_{30}H_{23}N_3O_4$	232	8.4
								(8.5)
IIc	-Br	-H	$-CH_3$	-H	-H	$C_{29}H_{20}N_3O_3Br$	215	7.5
								(7.8)
IId	-Br	-H	$-CH_3$	-H	-OCH ₃	$C_{30}H_{22}N_3O_4Br$	245	7.1
								(7.3)
IIe	$-CH_3$	-H	-H	-H	-H	$C_{29}H_{21}N_3O_3$	270	8.9
								(9.1)
IIf	$-CH_3$	-H	-H	-H	-OCH ₃	$C_{30}H_{23}N_3O_4$	231	8.1
								(8.5)
IIg	-H	-CH ₃	-H	-H	-H	$C_{29}H_{21}N_3O_3$	240	9.8
~~.	**	CIT	**	**	OCH		22.4	(9.1)
IIh	-H	-CH ₃	-H	-H	-OCH ₃	$C_{30}H_{23}N_3O_4$	234	8.3
111	**	**	**	**	**	CHNO	215	(8.5)
IIi	-H	-H	-H	-H	-H	$C_{28}H_{19}N_3O_3$	215	9.2
TT!	TT	11	11	11	OCH	CHNO	210	(9.4)
Пj	-H	-H	-H	-H	-OCH ₃	$C_{29}H_{21}N_3O_4$	210	8.5
								(8.8)

Vol. 19, No. 4 (2007)

Spectral interpretation of Ha: IR (KBr, ν_{max} , cm⁻¹) 3350 (-OH), 1620 (-C=N of pyrazole str.), 1625 (C=O str.), 1500 (C=C str.), 1390 (-C-N) str.), 1033 (C-O str.). PMR (δ ppm): 1.9 (S, 3H, -CH₃), 7.22-7.6 (m, 17H, Ar-H), 12 (S, 1H, -OH). UV (λ_{max}): 256 nm.

REFERENCES

- 1. M.M. Chincholkar and V.S. Jamode, Acta Cien. Indica, 32, 14 (1979-80).
- 2. B.S. Kakde and V.S. Jamode, *Indian J. Chem.*, **17B**, 622 (1979).
- A. Asghar, Ph.D. Thesis, Synthesis in Heterocyclics Compounds, Amravati University, Amravati (1988).
- W.A.F. Gladstone and R.O.C. Norman, J. Chem. Soc. (C), 1536 (1966); I. Bhatnagar and M.V. George, Tetrahedron, 24, 1293 (1968); T.C. Sharma, V. Saxena and N.J. Reddy, Acta Chim. (Budapest), 93, 415 (1977).
- P.R. Raghuwanshi, Ph.D. Thesis, Synthesis of some N, O and S Containing Heterocyclic Compounds, Amravati University, Amravati (1994).
- 6. T.C. Sharma, S. Rajender, D.D. Berje and A.V. Kale, *Indian J. Chem.*, **26B**, 687 (1987).
- 7. A.W. Raut and A.G. Doshi, Orient. J. Chem., 14, 349 (1998).
- I.I. Grandberg, S.N. Milovanova, A.N. Kost and I.T. Mittal, *Chem. Abstr.*, 56, 9368 (1962).
- 9. S. Rich and J.G. Horsfall, Phytopathology, 62, 457 (1952).
- 10. G.L. McNew and N.K. Sundbolam, Phytopathology, 39, 721 (1949).
- 11. E.I. Dvoretskaya, A.N. Kost and I.L. Pyrine, Chem. Abstr., 53, 6506 (1959).
- T. Kosug, H. Okada, Y. Teraishi, H. Ito and S. Kosaka, J. Pharm. Soc. (Japan), 74. 189 (1954).
- 13. E.J. Owen Jr., E.E. Swanson and B.B. Meyers, J. Am. Pharm. Assoc., 47, 70 (1958).
- 14. E. Herman and J.G. Gablis, Cancer Chemother. Rept., 14, 85 (1961).
- 15. N.B. Nisbet, J. Chem. Soc., 1568 (1938).
- 16. N.A. Velyeshko and I.T. Depeshko, Zh. Obshch. Khim., 23, 320 (1953).
- 17. A. Davood, M.A. Zolfigol and B. Maleki, Bull. Korean, Chem. Soc., 25 (2004).
- 18. M.V. Kadu and V.S. Jamode, Asian J. Chem., 10, 367 (1998).

(Received: 22 July 2005; Accepted: 1 February 2007) AJC-5384