NOTE

Synthesis of 3,5-Diaryl-4-benzoyl-1-pyridoyl Pyrazoles by Oxidation of Pyrazolines using DMSO-I \mathbf{I}_{2} Solvent

M.V. Kadu, R.E. Khadsan* and V.S. Jamode \dagger
Department of Chemistry, Anuradha Engineering College Chikhli-443 201, Buldana, India
E-mail: rek_4@rediffmail.com

Abstract

Some new 3,5-diaryl-4-benzoyl-1-pyridoyl pyrazoles have been synthesized by the oxidation of pyrazolines, by using I_{2} in DMSO solvent. The structures of these compounds have been established by spectral analysis (IR, NMR and UV) and elemental analysis.

Key Words: Synthesis, Oxidation, Pyrazolines, 3,5-Diaryl-4-benzoyl-1-pyridoyl pyrazoles.

Literature survey reveals the importance of chalcones and flavanones as a valuable starting material for the synthesis of heterocycles like pyrazolines, pyrazoles, isoxazoles, etc. Formation of pyrazolines have been reported ${ }^{1-3}$ by the action of hydrazine or phenyl hydrazines on chalcones and flavanones in solvents like DMSO, ethanol, etc.

Pyrazoles have been reported by oxidation of pyrazolines by chromic acid, potassium permangnate, silver nitrate, potassium ferricynide, lead oxide and manganese dioxide ${ }^{4}$. Nitro pyrazoles have been synthesized from nitro pyrazolines using DMSO- I_{2} as a solvent ${ }^{5}$. Sharma et al. ${ }^{6}$ obtained pyrazoles form pyrazolines using lead tetra acetate as an oxidizing agent in benzene medium. Pyrazoles and their derivatives were prepared by the action of DMSO- $\mathrm{I}_{2}-\mathrm{H}_{2} \mathrm{SO}_{4}$ and DMSO- I_{2} system ${ }^{7}$ on pyrazolines and its derivatives. 1,3,5-Trisubstituted pyrazoles were prepared by the oxidation of pyrazolines using 1,3 -dibromo-5,5-dimethyl hydantoin ${ }^{8}$. Pyrazole is a class of compounds which are widely used in drugs and dyes ${ }^{9,10}$. These compounds also shows physiological activities ${ }^{11-17}$.

Thus, it was thought of interest to study the reactions of 3,5-diaryl-4-benzoyl-1-pyridoyl- Δ^{2}-pyrazolines with DMSO- I_{2} system to yield pyrazoles.

[^0]Melting points are uncorrected. IR spectra in KBr was recorded on FT IR spectrophotometer Schimadzu-8101, at Department of Pharmaceutical Sciences, Nagpur University, Nagpur. PMR spectra was recorded on AMX400 MHz high resolution FT NMR spectrometer at Regional Sophisticated Instruments Center, Indian Institute of Sciences, Bangalore. The purity of the compounds was checked on Silica Gel-G coated plates.

Synthesis of 3,5-diaryl-4-benzoyl-1-pyridoyl- Δ^{2}-pyrazolines (Ia-j): 3,5-Diaryl-4-benzoyl-1-pyridoyl- Δ^{2}-pyrazolines were prepared by known method ${ }^{18}$.

Synthesis of 3,5-diaryl-4-benzoyl-1-pyridoyl pyrazoles (IIa-j): 3,5-Diaryl-4-benzoyl-1-pyridoyl- Δ^{2}-pyrazolines (Ia-j) were suspended in DMSO (20 mL) and a crystal of iodine was added to it. The reaction mixture was refluxed for 1 h , cooled and diluted with water to get corresponding pyrazoles. It was then washed with 20% sodium thiosulphate to remove iodine and finally washed with water and crystallized from ethanol-acetic acid mixture to obtained white crystalline solid (yield 60-80 \%) (Table-1).

TABLE-1
PHYSICAL CHARACTERIZATION DATA OF SYNTHESIZED COMPOUNDS

Compd.	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	m.f.	$\begin{aligned} & \text { m.p. } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\% \mathrm{~N}$ Found (Calcd.)
IIa	-H	-H	- CH_{3}	-H	-H	$\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$	252	$\begin{gathered} 8.9 \\ (9.1) \end{gathered}$
IIb	-H	-H	- CH_{3}	-H	$-\mathrm{OCH}_{3}$	$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$	232	$\begin{gathered} 8.4 \\ (8.5) \end{gathered}$
IIC	-Br	-H	- CH_{3}	-H	-H	$\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Br}$	215	$\begin{gathered} 7.5 \\ (7.8) \end{gathered}$
IId	-Br	-H	- CH_{3}	-H	- OCH_{3}	$\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Br}$	245	$\begin{gathered} 7.1 \\ (7.3) \end{gathered}$
IIe	$-\mathrm{CH}_{3}$	-H	-H	-H	-H	$\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$	270	$\begin{gathered} 8.9 \\ (9.1) \end{gathered}$
IIf	$-\mathrm{CH}_{3}$	-H	-H	-H	$-\mathrm{OCH}_{3}$	$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$	231	$\begin{gathered} 8.1 \\ (8.5) \end{gathered}$
IIg	-H	$-\mathrm{CH}_{3}$	-H	-H	-H	$\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$	240	$\begin{gathered} 9.8 \\ (9.1) \end{gathered}$
IIh	-H	$-\mathrm{CH}_{3}$	-H	-H	$-\mathrm{OCH}_{3}$	$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$	234	$\begin{gathered} 8.3 \\ (8.5) \end{gathered}$
IIi	-H	-H	-H	-H	-H	$\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$	215	$\begin{gathered} 9.2 \\ (9.4) \end{gathered}$
IIj	-H	-H	-H	-H	$-\mathrm{OCH}_{3}$	$\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$	210	$\begin{gathered} 8.5 \\ (8.8) \end{gathered}$

Spectral interpretation of IIa: IR $\left(\mathrm{KBr}, \boldsymbol{v}_{\max }, \mathrm{cm}^{-1}\right) 3350(-\mathrm{OH}), 1620$ (-C=N of pyrazole str.), 1625 ($\mathrm{C}=\mathrm{O}$ str.), 1500 ($\mathrm{C}=\mathrm{C}$ str.), 1390 (-C-N) str.), 1033 (C-O str.). PMR ($\delta \mathrm{ppm}$): 1.9 ($\mathrm{S}, 3 \mathrm{H},-\mathrm{CH}_{3}$), 7.22-7.6 (m, 17H, $\mathrm{Ar}-\mathrm{H}), 12(\mathrm{~S}, 1 \mathrm{H},-\mathrm{OH}) . \mathrm{UV}\left(\lambda_{\max }\right): 256 \mathrm{~nm}$.

REFERENCES

1. M.M. Chincholkar and V.S. Jamode, Acta Cien. Indica, 32, 14 (1979-80).
2. B.S. Kakde and V.S. Jamode, Indian J. Chem., 17B, 622 (1979).
3. A. Asghar, Ph.D. Thesis, Synthesis in Heterocyclics Compounds, Amravati University, Amravati (1988).
4. W.A.F. Gladstone and R.O.C. Norman, J. Chem. Soc. (C), 1536 (1966); I. Bhatnagar and M.V. George, Tetrahedron, 24, 1293 (1968); T.C. Sharma, V. Saxena and N.J. Reddy, Acta Chim. (Budapest), 93, 415 (1977).
5. P.R. Raghuwanshi, Ph.D. Thesis, Synthesis of some N, O and S Containing Heterocyclic Compounds, Amravati University, Amravati (1994).
6. T.C. Sharma, S. Rajender, D.D. Berje and A.V. Kale, Indian J. Chem., 26B, 687 (1987).
7. A.W. Raut and A.G. Doshi, Orient. J. Chem., 14, 349 (1998).
8. I.I. Grandberg, S.N. Milovanova, A.N. Kost and I.T. Mittal, Chem. Abstr., 56, 9368 (1962).
9. S. Rich and J.G. Horsfall, Phytopathology, 62, 457 (1952).
10. G.L. McNew and N.K. Sundbolam, Phytopathology, 39, 721 (1949).
11. E.I. Dvoretskaya, A.N. Kost and I.L. Pyrine, Chem. Abstr., 53, 6506 (1959).
12. T. Kosug, H. Okada, Y. Teraishi, H. Ito and S. Kosaka, J. Pharm. Soc. (Japan), 74. 189 (1954).
13. E.J. Owen Jr., E.E. Swanson and B.B. Meyers, J. Am. Pharm. Assoc., 47, 70 (1958).
14. E. Herman and J.G. Gablis, Cancer Chemother. Rept., 14, 85 (1961).
15. N.B. Nisbet, J. Chem. Soc., 1568 (1938).
16. N.A. Velyeshko and I.T. Depeshko, Zh. Obshch. Khim., 23, 320 (1953).
17. A. Davood, M.A. Zolfigol and B. Maleki, Bull. Korean, Chem. Soc., 25 (2004).
18. M.V. Kadu and V.S. Jamode, Asian J. Chem., 10, 367 (1998).

[^0]: \dagger Pro-Vice Chancellor, Amravati University, Amravati-444 602, India.

