Asian Journal of Chemistry

# Identification of Organic Migrants from Some Plastic Food Packaging used in Saudi Arabia using Water as Food Simulant

Монаммад W. Kadi, Iqbal M. Ismail and Tariq R. Sobahi\* Department of Chemistry, Faculty of Science, King Abdulaziz University Jeddah-21589, P.O. Box 80203, Saudi Arabia E-mail: drtariq\_s@hotmail.com

In this study, the authors are interested in organic migrants originating from plastic food-packages used widely in the Saudi market. Instead of using the food itself to conduct experiments food simulant is used, this is to avoid any spectral interferences. Deionized water was used as food simulant which is made to come into contact with the polymer material under desired conditions. GC-MS analysis was used to identify migrants. Many alkyl phthalates and hydrocarbons were found to have been migrated into the food simulant.

Key Words: Polymer food packaging, Food stimulant, Organic migrants, GC-MS analysis, Alkyl phthalates.

# **INTRODUCTION**

Wide varieties of materials are being used for food packaging. Examples are metal, polymer and paper-based packages. Polymer based packages has grown in popularity and are used all over the world for various applications. Recently, numerous studies showed that packaging might pose a problem through migration of contaminants from the packaging material into food. Two major categories of migrants can be identified, organic and inorganic species. Migration of elements from polymer packaging into food has been studied by many researchers and is still an active area of research<sup>1-3</sup>. Migration of organic matter is also an active area of research due to wide variety of organic species that could migrate from the packaging material into food.

Modelling studies try to simulate and predict the nature of the migration process. In these studies, the packaging material is subjected to extreme conditions and possible contamination has been studied<sup>4</sup>. Other studies concentrate on qualitative and quantitative aspects of the migrants<sup>5,6</sup>. Extracting the possible migrants from packaging material is another way to study food contamination<sup>7-9</sup>. In their study Castle *et al.*<sup>8,9</sup> extracted certain migrants from paperboard packaging material. In a study by Begley *et al.*<sup>10</sup>, nylon packaging material was dissolved in organic solvents and possible migrants were studied. Vol. 19, No. 4 (2007)

Contaminants can originate from the main packaging material itself (the polymer) as monomer, dimers, trimers etc. or from additives used to improve the quality of the package. Both types of migrants were studied by some authors, for example, styrene dimer and trimers migrated from disposable lunch boxes were quantitatively determined by Sakamoto *et al.*<sup>5</sup>. Contaminants from additives such as plasticizers and thermal stabilizers were studied by many investigators and many migrants were identified<sup>11-14</sup>. Migration of antioxidant additives from polymer packages into organic food simulants was studied under different temperatures. Migration was shown to increase at higher temperatures<sup>15</sup>. A study of migration from recycled paper packaging materials was conducted at 70 and 100°C at various time intervals<sup>16</sup>. Along with the actual determination and identification of organic migrants, methods for rapid testing, determinations and identification are reported<sup>16,17</sup>.

### EXPERIMENTAL

GC/MS spectra were taken on QP-7000 Shimadzu, with a fused silica capillary column ( $30 \text{ m} \times 0.25 \text{ mm}$  ID), film (5% phenyl, 95% methylsilicon) thickness 0.25  $\mu$  and the output is an IBM computer with software class 5000 and GC-MS library for comparison.

Five samples of plastic packaging of different origins were collected from the local market. Samples were cut into  $3 \times 3$  cm pieces; a total of 5 pieces were used in every experiment bringing the total area to 45 cm<sup>2</sup>. Samples were immersed in 100 mL deionized water as food stimulant in Pyrex glass cups for 4 h. Experiments were conducted at 0, 20, 40, 60 and 80°C using a water bath to control the temperature. After 4 h, the plastic sample was removed and then the aqueous solution for every experiment was extracted into diethyl ether ( $3 \times 50$  mL), dried over magnesium sulfate, filtered and evaporated *in vacuo*. The residue was dissolved in 1 mL of pure diethyl ether and subjected to GC-MS analysis to identify organic compounds.

For each experiment a reagent blank was prepared. The reagent blank contains deionized water only without any plastic packaging material. The reagent blank was run parallel to the actual samples into GC-MS to secure that the measured organic compounds are transferred only from packaging material, not from other sources.

# **RESULTS AND DISCUSSION**

The purpose of this investigation is to identify the range of migration of some organic compounds from plastic packaging material which are used to save and transfer food. To perform experiments, water was used instead of actual food as a medium to measure contamination caused by

#### 2746 Kadi et al.

the transfer of matter from the packages into food. Because food contains so many compounds, spectral interferences are unavoidable. To get around this problem often a food simulant of some kind is used. Various food simulants have been used for specific applications *e.g.*, organic solvents, olive oil, cooking oil and acetic acid.

A survey for types of plastic packaging used to save and transfer food in Saudi Arabia was performed. Five samples were chosen from common plastic packaging types and used for the purpose of this investigation. Samples representative of various applications were selected. Sample type, origin, application and basic polymer material are shown in Table-1.

| Sample | Origin                  | Application    | Туре         | Polymer<br>material       |
|--------|-------------------------|----------------|--------------|---------------------------|
| 1      | Jeddah, Saudi<br>Arabia | Hot-cold drink | Small cup    | Polystyrene               |
| 2      | Thailand                | Hot food       | Plastic bag  | Polyethylene              |
| 3      | Jeddah, Saudi<br>Arabia | Water          | Water gallon | High density polyethylene |
| 4      | Jeddah, Saudi<br>Arabia | Hot food       | Plastic box  | Polyethylene              |
| 5      | Jeddah, Saudi<br>Arabia | Hot-cold drink | Large cup    | Polystyrene               |

TABLE-1 PACKAGING SAMPLE INFORMATION

GC-MS was used to investigate migration. Each GC-MS run results in a GC-MS chromatogram which is analyzed utilizing a built-in database. By examining the resulting chromatograms and data from GC-MS analysis, one can draw conclusions about migration under different conditions. Fig. 1 shows a typical GC-MS chromatogram and mass spectrum. Possible compounds present are identified by comparison between the GC-MS library and the actual spectrum of each component.

Analysis of data obtained for samples 1-5 at different temperatures show different peaks related mainly to various alkyl phthalate derivatives in different ratios (amounts) depending on the derivative. In addition to alkyl phthalate derivatives some long chain hydrocarbons appear to be present in the solutions.

Tables 2-6 show name, molecular weight, formula and retention time (Rt) of compounds believed to have been migrated into water from different packaging samples under investigation. One can notice the minute differences in the retention times of the same compound investigated under various temperatures.

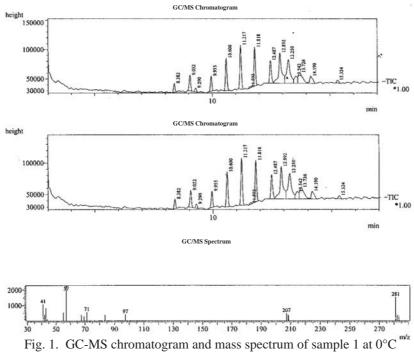



TABLE-2 MOLECULAR WEIGHT, FORMULA AND RETENTION TIMES OF MIGRANT COMPOUNDS AT VARIOUS TEMPERATURES FOR SAMPLE 1

| Compound                                 | m.w. | m.f.                              | 0°C   | 20°C  | 40°C | 60°C  | 80°C  |
|------------------------------------------|------|-----------------------------------|-------|-------|------|-------|-------|
| Dibutyl phthalate                        | 278  | $C_{16}H_{22}O_4$                 | 8.38  | 8.53  | -    | 10.11 | 10.12 |
| Di <i>iso</i> butyl<br>phthalate         | 278  | $C_{16}H_{22}O_4$                 | 9.04  | 9.23  | -    | 10.80 | 10.79 |
| 2,6,10,14-<br>Tetramethyl<br>heptadecane | 296  | $C_{21}H_{44}$                    | 9.95  | 10.18 | -    | -     | -     |
| Tridecyliodide                           | 310  | $C_{13}H_{27}I$                   | 10.59 | -     | -    | -     | -     |
| 7-n-Hexyl eicosane                       | 366  | $C_{26}H_{54}$                    | 11.20 | -     | -    | -     | -     |
| Octadecane                               | 254  | $C_{18}H_{38}$                    | 11.81 | -     | -    | -     | -     |
| 1,1,1-Triphenyl-2-<br>decanol            | 386  | C <sub>28</sub> H <sub>34</sub> O | -     | -     | -    | 12.36 | 12.37 |
| Eicosane                                 | 282  | $C_{20}H_{42}$                    | 12.48 | -     | -    | 12.98 | 12.98 |
| Di-n-octyl phthalate                     | 390  | $C_{24}H_{38}O_4$                 | 12.89 | -     | -    | -     | -     |
| Diisooctyl phthalate                     | 390  | $C_{24}H_{38}O_4$                 | 13.70 | 13.33 | -    | 14.55 | 14.55 |

2748 Kadi et al.

Asian J. Chem.

| TABLE-3                                       |
|-----------------------------------------------|
| MOLECULAR WEIGHT, FORMULA AND RETENTION TIMES |
| OF MIGRANT COMPOUNDS AT VARIOUS TEMPERATURES  |
| FOR SAMPLE 2                                  |

| FOR SAMPLE 2                     |      |                                   |       |       |       |       |       |  |
|----------------------------------|------|-----------------------------------|-------|-------|-------|-------|-------|--|
| Compound                         | m.w. | m.f.                              | 0°C   | 20°C  | 40°C  | 60°C  | 80°C  |  |
| Dibutyl<br>phthalate             | 278  | $C_{16}H_{22}O_4$                 | -     | 8.54  | 8.37  | 8.37  | 8.37  |  |
| Di <i>iso</i> butyl<br>phthalate | 278  | $C_{16}H_{22}O_4$                 | 9.04  | 9.23  | 9.04  | 9.04  | 9.03  |  |
| Heptadecane                      | 240  | $C_{17}H_{36}$                    | 9.94  | -     | 10.59 | 9.95  | 10.58 |  |
| Eicosane                         | 282  | $C_{20}H_{42}$                    | 11.20 | 10.85 | 12.46 | 10.59 | 11.20 |  |
| 7- <i>n</i> -Hexyl eicosane      | 366  | C <sub>26</sub> H <sub>54</sub>   | 12.47 | -     | 11.20 | 12.47 | -     |  |
| 1,1,1-Triphenyl-<br>2-decanol    | 386  | C <sub>28</sub> H <sub>34</sub> O | -     | -     | 11.70 | -     | -     |  |
| Di- <i>n</i> -octyl phthalate    | 390  | $C_{24}H_{38}O_4$                 | 12.65 | -     | 12.86 | 12.75 | 12.87 |  |
| Di <i>iso</i> octyl<br>phthalate | 390  | $C_{24}H_{38}O_4$                 | 12.87 | 13.33 | 13.70 | 13.55 | -     |  |
| Tetradecamethyl hexasiloxane     | 458  | $C_{14}H_{42}O_5Si_6$             | -     | -     | -     | 14.27 | -     |  |

# TABLE-4

# MOLECULAR WEIGHT, FORMULA AND RETENTION TIMES OF MIGRANT COMPOUNDS AT VARIOUS TEMPERATURES FOR SAMPLE 3

|                                  |      | 10101                           | uvii LE. | ,     |       |       |       |
|----------------------------------|------|---------------------------------|----------|-------|-------|-------|-------|
| Compound                         | m.w. | m.f.                            | 0°C      | 20°C  | 40°C  | 60°C  | 80°C  |
| Dibutyl phthalate                | 278  | $C_{16}H_{22}O_4$               | -        | 8.57  | 8.39  | 8.36  | 8.38  |
| Di <i>iso</i> butyl<br>phthalate | 278  | $C_{16}H_{22}O_4$               | 9.05     | 9.25  | 9.05  | 9.03  | 9.05  |
| Heptadecane                      | 240  | $C_{17}H_{36}$                  | 9.95     | 11.50 | -     | 9.94  | 9.95  |
| Eicosane                         | 282  | $C_{20}H_{42}$                  | 10.60    | 12.90 | -     | 11.20 | 10.59 |
| 8-Heptyl-<br>pentadecane         | 310  | C <sub>22</sub> H <sub>46</sub> | 11.22    | -     | -     | -     | -     |
| Tetracosane                      | 338  | $C_{24}H_{50}$                  | 11.82    | -     | -     | -     | -     |
| Di- <i>n</i> -octyl phthalate    | 390  | $C_{24}H_{38}O_4$               | 12.90    | 13.12 | 12.90 | 12.74 | 12.87 |
| Di <i>iso</i> octyl<br>phthalate | 390  | $C_{24}H_{38}O_4$               | -        | 13.60 | 13.23 | 13.20 | -     |
| 9- <i>n</i> -Octyl-<br>eicosane  | 394  | C <sub>28</sub> H <sub>58</sub> | -        | 14.12 | -     | -     | -     |

Vol. 19, No. 4 (2007)

Organic Migrants from Plastic Food Packaging 2749

### TABLE-5 MOLECULAR WEIGHT, FORMULA AND RETENTION TIMES OF MIGRANT COMPOUNDS AT VARIOUS TEMPERATURES FOR SAMPLE 4

| Compound                          | m.w. | m.f.              | 0°C   | 20°C  | 40°C  | 60°C  | 80°C  |
|-----------------------------------|------|-------------------|-------|-------|-------|-------|-------|
| Di <i>iso</i> butyl<br>phthalate  | 278  | $C_{16}H_{22}O_4$ | -     | 10.10 | 8.36  | -     | -     |
| Dibutyl phthalate                 | 278  | $C_{16}H_{22}O_4$ | 9.04  | 10.77 | 9.02  | 9.04  | 9.05  |
| Heptadecane                       | 240  | $C_{17}H_{36}$    | 9.95  | -     | -     | 10.58 | 9.95  |
| Eicosane                          | 282  | $C_{20}H_{42}$    | 11.20 | 12.34 | 11.80 | 11.20 | 11.81 |
| 2,6,11-Trimethyl-<br>dodocane     | 212  | $C_{15}H_{32}$    | 12.48 | -     | 12.46 | 12.47 | -     |
| Tetracosane                       | 338  | $C_{24}H_{50}$    | -     | -     | -     | -     | -     |
| Di- <i>iso</i> octyl<br>Phthalate | 390  | $C_{24}H_{38}O_4$ | 12.88 | 14.40 | 12.73 | 12.73 | 12.89 |
| Di- <i>n</i> -octyl phthalate     | 390  | $C_{24}H_{38}O_4$ | -     | 14.53 | 12.86 | 12.85 | 13.22 |

| TABLE-6                                       |
|-----------------------------------------------|
| MOLECULAR WEIGHT, FORMULA AND RETENTION TIMES |
| OF MIGRANT COMPOUNDS AT VARIOUS TEMPERATURES  |
| FOR SAMPLE 5                                  |

| TOR SHUILE S                             |      |                                 |       |       |       |       |       |  |
|------------------------------------------|------|---------------------------------|-------|-------|-------|-------|-------|--|
| Compound                                 | m.w. | m.f.                            | 0°C   | 20°C  | 40°C  | 60°C  | 80°C  |  |
| Di <i>iso</i> butyl<br>phthalate         | 278  | $C_{16}H_{22}O_4$               | -     | 8.55  | 8.38  | 8.36  | 8.35  |  |
| Dibutyl phthalate                        | 278  | $C_{16}H_{22}O_4$               | 9.04  | 9.25  | 9.04  | 9.04  | 9.04  |  |
| Heptadecane                              | 240  | $C_{17}H_{36}$                  | 10.59 | -     | 11.80 | 9.95  | 9.95  |  |
| Eicosane                                 | 282  | $C_{20}H_{42}$                  | 11.20 | -     | 12.47 | 10.59 | 10.59 |  |
| 2,6,10,15-<br>Tetramethyl-<br>heptadcane | 296  | C <sub>21</sub> H <sub>44</sub> | -     | 12.15 | -     | -     | -     |  |
| 7- <i>n</i> -Hexyl eicosane              | 366  | $C_{26}H_{54}$                  | 11.80 | 13.76 | -     | -     | 11.80 |  |
| Di <i>iso</i> octyl<br>phthalate         | 390  | $C_{24}H_{38}O_4$               | -     | -     | 12.74 | 12.87 | 12.88 |  |
| Di- <i>n</i> -octyl phthalate            | 390  | $C_{24}H_{38}O_4$               | -     | 13.35 | 12.88 | 13.21 | 13.20 |  |

As for the effect of temperature on migration it appears that temperature has little effect on quantities of migrants. This may be due to the random mobility change of the polymeric chains with temperature. At higher temperatures, coiling and some entanglements may be occurring and this may result in hindering the release of additives.

Asian J. Chem.

### 2750 Kadi et al.

# Conclusion

GC-MS was used to study migration of organic compound from polymer packaging material into food. It appears that additives mainly migrate into the food simulant. Effect of temperature seems to be minimal. Extensive studies are still needed to absolutely identify compounds using standards and nuclear magnetic resonance technique. Quantitative determination of migrants can also be a field of study. Health effects of theses migrants are another area of concern.

### ACKNOWLEDGEMENTS

Institute of Research and Consultation, King Abdulaziz University and Saudi Arabian Basic Industries Company (SABIC) are thanked for their financial support of this work.

#### REFERENCES

- 1. D. Thompson, S.J. Parry and R. Benzing, J. Radioanal. Nucl. Chem., 217, 147 (1997).
- 2. D. Thompson, S.J. Parry and R. Benzing, J. Radioanal. Nucl. Chem., 213, 349 (1996).
- 3. M. Kadi, Orient. J. Chem., 19, 505 (2003).
- 4. A. Reynier, P. Dole and A. Feigenbaum, Food Addit. Contam., 16, 137 (1999).
- 5. H. Sakamoto, A. Matsuzaka, R. Itoh and Y. Tohyama, *Shokuhin Eiseigaku Zasshi*, **41**, 200 (2000).
- M.H.W.M. Cardoso, E.R. Lachter, D. Tabak, S. Abrantes and O.M.G. DeMoraes, J. High Resol. Chromatogr., 22, 70 (1999).
- 7. G. Lawson, C.T. Barkby and C. Lawson, Fresenius J. Anal. Chem., 354, 483 (1996).
- L. Castle, A.P. Damant, C.A. Honeybone, S.M. Johns, S.M. Jickells, M. Sharman and J. Gilbert, *Food Addit. Contam.*, 14, 45 (1997).
- 9. L. Castle, C.P. Offen, M.J. Baxter and J. Gilbert, Food Addit. Contam., 14, 35 (1997).
- 10. T.H. Begley, M.L. Gay and H.C. Hollifield, Food Addit. Contam., 12, 671 (1995).
- 11. S. Tan and T. Okada, Shokuhin Eiseigaku Zasshi, 24, 207 (1983).
- L. Castle, S.M. Jickells, J. Nichol, S.M. Johns and J.W. Gramshaw, J. Chromatogr. A, 675, 261 (1994).
- 13. L. Oi-Wah and W. Siu-Kay, J. Chromatogr. A, 882, 255 (2000).
- 14. C.Y. Chen, A.V. Ghule, W.Y. Chen, C.C. Wang, Y.S. Chiang and Y.C. Ling, *Apll. Surf. Sci.*, **231**, 447 (2004).
- 15. B. Marcato, S. Guerra, M. Vianello and S. Scalia, Int. J. Pharm., 257, 217 (2003).
- V.I. Triantafyllou, K. Akrida-Demertzi and P.G. Demertzis, *Anal. Chim. Acta*, 467, 253 (2002).
- A. Schaefer, T. Küchler, T.J. Simat and H. Steinhart, J. Chromatogr. A, 1017, 107 (2003).