Vibrational Spectroscopic Studies and *ab initio* **Calculations of Pyridine-3-sulfonic Acid**

HEMA TRESA VARGHESE[†], C. YOHANNAN PANICKER^{*}, P.L. ANTO[†] and DAIZY PHILIP[#] *Department of Physics, TKM College of Arts & Science, Kollam-691 005, India E-mail: cyphyp@rediffmail.com*

> FT-Raman and FT-IR spectra of pyridine-3-sulfonic acid were recorded and analyzed. The molecular geometry and vibrational wave numbers of pyridine-3-sulfonic acid have been calculated using the Hartree-Fock method with different basis sets. Comparison of the observed fundamental vibrational wavenumbers of pyridine-3-sulfonic acid with calculated results by Hartree-Fock method is found in agreement with the experimental data.

> **Key Words: Pyridine-3-sulfonic acid, FT-Raman, FT-IR, Hartree-Fock** *ab initio* **calculation.**

INTRODUCTION

Pyridine has been extensively studied spectroscopically, due to its applications in many chemical structures of high interest in a variety of biomedical and industrial fields¹. Pyridine has the intrinsic interest of being the azine nearest to benzene. Aromatic sulfonation is an important industrial process which is used for the manufacture of detergents and surfactants from alkyl benzene². Sulfones are useful intermediates in a wide range of fields such as agrochemicals³, pharmaceuticals⁴ and polymers^{5,6}. The sulfonyl group is widely used by synthetic organic chemists and sulfones have many industrial applicatons^{7,8}. Pyridine-3-sulfonic acid is found to inhibit the growth of micro organisms⁹. In the present study, the FT-Raman, FT-IR and theoretical calculations of the wave numbers for the pyridine-3-sulfonic acid are reported.

EXPERIMENTAL

Pyridine-3-sulfonic acid was purchased from Sigma-Aldrich, USA. The FT-IR and FT-Raman spectra were recorded using a Bruker IFS 66 V FT-IR/FT-Raman spectrometer.

 [†]Department of Physics, Fatima Mata National College, Kollam-691 001, India.

 [‡]Department of Physics, St. Thomas College, Trichur-680 001, India.

 [#]Department of Physics, Mar Ivanois College, Nalanchira, Trivandrum-695 015, India.

2628 Varghese *et al. Asian J. Chem.*

Computational details

Ab initio quantum chemical computations were performed at the HF/ 6-31 $G(d)$, HF/6-31 $C(d,p)$ and HF/6-311 $G(d,p)$ levels of theory to obtain the vibrational wave numbers of normal modes of pyridine-3-sulfonic acid using the Gaussian03 program package¹⁰. Molecular geometries were fully optimized by Berny's optimization algorithm using redundant internal coordinates. All optimized structures were confirmed to be minimum energy conformations. Harmonic vibrational wave numbers were calculated using analytic second derivatives to confirm the convergence to minima on the potential surface. The inclusion of 'd' polarization and double-zeta function in the split valence basis set is expected to produce a marked improvement in the calculated geometry¹¹. At the optimized structure of the examined species no imaginary frequency modes were obtained, prov ing that a true minimum on the potential energy surface was found. The optimum geometry was determined by minimizing the energy with respect to all geometric parameters without imposing molecular symmetry constraints. As suggested by Scott and $Radom¹²$ for a better comparison with experiment, the calculated wave numbers are scaled by an empirical factor of 0.9045. This scaling factor accounts for systematic error caused by basis set incompleteness, neglect of electron correlation and vibrational anharmonicity¹³. The vibrational assignments are given in Table 1.

TABLE-1

CALCULATED VIBRATIONAL WAVENUMBERS, MEASURED INFRARED AND RAMAN BAND POSITIONS (CM⁻¹) AND ASSIGNMENTS FOR PYRIDINE-3-

Vol. 19, No. 4 (2007) Spectroscopic Studies of Pyridine-3-sulfonic Acid 2629

$HF/6-31$	HF/6-311	HF/6-311	v_{IR}	v_{Raman}	Assignment
G(d)	G(d,p)	G(d,p)			
1216	1210	1203	1203 s		δ CH
1188	1184	1156	1186 s	1185 m	v_s SO ₂
1154	1148	1136	1141 s	1144 m	δ CH
1135	1120	1102	1116 m	1118 w	$\delta_{\rm s}$ OH
1106	1105	1098			δ CH
1083	1080	1063		1048 vs	δ CH
1034	1033	1026	1035 s	1034 m	$\nu S-O(H)$
1033	1032	1025	1022s	1020 vvs	vPy
1011	1010	1007			γ CH
1010	1009	1003	1010 sh		γ CH
978	978	973	957 m	950 w	γ CH
854	855	854	927 m	902 w	γ CH, γ SOH
824	820	818	820 m	821 m	γ CH
741	740	738	742 m	742 s	δP y(X), vC-S
696	696	695	681 m	670 w	γ Py
			633 m	630 w	$\delta \text{Py}, \, \delta \text{SO}_2$
618	618	619	608 m	607 w	$\delta \text{Py}, \, \delta \text{SO}_2$
593	592	596	568 m	571 w	$\delta Py(X), \delta SO_2$
554	555	553	552 m	52 w	ω SO ₂
470	470	474		481 w	γPy, τSO ₂
450	453	449			$\gamma Py(X)$
408	407	407		405 w	γP y, τSO_2
360	356	364		380 w	δPy, τSO ₂
313	313	312		317 w	ρSO_2
286	288	285			$\rho SO2$
184	183	184		173 vs	$\tau P y$
140	132	136			τ Py
121	117	121		129 vvs	τ Py
27	27	25			τ Py

RESULTS AND DISCUSSION

Band assignments are made referring to reported data on selected organic structures¹⁴, Colthup *et al.*¹⁵, Silverstein and Webster¹⁶, Urena *et al.*¹⁷, Klots¹⁸ and Philip *et al.*¹⁹.

The pyridine C-H stretching vibrations^{14,18,20,21} are usually observed in the range 3100-3000 cm-1. We have observed four νCH modes of 3-X substituted pyridine at $3120, 3091, 3046, 3004$ cm⁻¹, in the IR spectrum and at 3117, 3092, 3070, 3047 cm⁻¹ in the Raman spectrum. The calculated values (HF/6-31G(d) for this mode are 3091, 3086, 3077 and 3057 cm-1. The band at 2937 cm^{-1} in the IR spectrum and 2936 cm^{-1} in the Raman spectrum can be typically seen in the spectra of sulfonic acid due to OH stretching¹⁵. Overtones/combinations of hydrogen bonded OH bending modes are observed in the IR spectrum in the range 2786-1740 cm⁻¹ due to proton tunneling and Fermi resonance interactions^{$22-26$}. Ring stretching

2630 Varghese *et al. Asian J. Chem.*

vibrations^{14,16} occur in the region $1600-1300$ cm⁻¹. These modes involve stretching and contraction of all the bonds in the ring and interaction between the stretching modes. The bands 1628, 1617, 1551, 1470 cm⁻¹ in the IR spectrum and 1629, 1618 cm⁻¹ in the Raman spectrum are asigned as ring stretching vibrations. The calculated values after scaling (HF/6-31G(d)) are 1625, 1615, 1488 and 1432 cm⁻¹. According to Bellamy²⁷ the band at 1600 cm^{-1} may show a double maximum and Cook and Church²⁸ suggest that for 3-mono substituted pyridine the average seperaton of these bands is 20 cm⁻¹. The band at 1033 cm⁻¹ (calculated), 1022 cm⁻¹ (IR) and 1020 cm^{-1} (Raman) is assigned to the pyridine ring breathing mode^{14,17}. The δ CH bands are expected^{14,17} in the range 1263-1048 cm⁻¹ in both IR and Raman spectra.

The out-of-plane CH deformation vibrations $14,17$ are observed in the range 1010-820 cm⁻¹. The bands at 1010, 957, 927 and 820 cm⁻¹ in the IR spectrum and 950, 902 and 821 cm⁻¹ in the Raman spectrum are assigned to γCH modes. The calculated values are 1011, 1010, 978, 854 and 824 cm-1 $(HF/6-31G(d))$ which are in agreement with the observed values. As seen from Table-1, the *ab initio* calculation shows that γCH mode at 854 cm-1 is not pure but contain significant contribution of the mode γ $SOH¹⁹$. The in plane deformation modes of pyridine are observed at 742, 633, 608 and 568 cm-1 in the IR spectrum and at 742, 630, 607, 571 and 380 cm-1 in the Raman spectrum. The calculated values are 741, 618, 593, 360 cm⁻¹ and these modes are not pure but contain contributions from other substituent sensitive modes¹⁴. The C-S stretching vibration appears moderately to strongly in the region 760 ± 25 cm⁻¹ for majority of investigated molecules¹⁴. The band observed at 742 cm^{-1} is assigned to vC-S vibration. As seen from Table-1, the *ab initio* calculations also show that the νC-S vibration is not pure and contain significant contributions of other modes. The out-of-plane deformations are assigned at 696 , 470 , 450 , 408 cm⁻¹ (calculated) and 681 $cm⁻¹$ (IR) and 670, 481, 405 $cm⁻¹$ (Raman) and some of these modes also contain contributions from other modes 14 .

The spectra of esters of sulfonic acids are dominated by three absorptions with a moderate to strong intensity, due to both SO_2 stretching vibrations and a S-O stretching. Usually esters of sulfonic acids absorb at 1385 \pm 35 cm⁻¹ due to asymmetric SO₂ stretching vibrations^{14,16}. The calculated values are 1366 and 1342 cm⁻¹. Sulfonic acid complexes show symmetric SO_2 stretching vibrations¹⁴ at 1200 ± 35 cm⁻¹. The symmetric SO_2 stretching vibration appears around 1186 cm⁻¹ in both IR and Raman spectra^{14,16,29} with a theoretical value of 1188 cm^{-1} . By comparison with OH bending frequencies in sulfuric acid and other sulfonic acids the band at around 1118 cm⁻¹ is assigned to SOH bend³⁰. The vS-O(H) mode is reported at 1026 cm⁻¹ for sulfamic acid¹⁹ at around 1020 cm⁻¹ for amino benzene

sulfonic acids³¹ and at 1040 cm⁻¹ for *p*-toluene sulfonic acid³². For pyridine-3-sulfonic acid, the νS-O is observed as a strong band at 1035 $cm⁻¹$ in the IR spectrum, as a medium intense one at 1034 cm⁻¹ in the Raman spectrum and the calculated value is 1034 cm^{-1} ³³.

Usually the $SO₂$ deformations absorb with a weak to moderate intensity. The SO₂ scissors¹⁴ absorb in the range 565 ± 45 cm⁻¹ and observed at 633, 608 cm⁻¹ in the IR spectrum and at 630, 607 cm⁻¹ in the Raman spectrum. A second $SO₂$ deformation, often assigned as a wagging mode is found at 552 cm⁻¹, clearly separated from the scissors. The $SO₂$ twisting and rocking vibrations^{14,34} are seen in the range 425 ± 85 cm⁻¹ and 345 ± 55 $cm⁻¹$. The calculated values in the range 408-286 cm⁻¹ contain contributions from these two modes. The low frequency modes are assigned to the torsion of the pyridine ring¹⁴.

Conclusion

In this work, we have performed the experimental and the theoretical vibrational analysis of pyridine-3-sulfonic acid. A comparison of the result of the experimental and theoretical study gave us a description of the vibrational properties of pyridine-3-sulfonic acid. The calculated vibrational wave numbers obtained with Hartree-Fock basis are in good agreement with the experimental values obtained for the investigated molecule. The observed disagreement between the theory and experiment could be a consequence of the anharmonicity and of the general tendency of the quantum chemical moethods to overestimate the force constants at the exact equilibrium geometry³⁵.

ACKNOWLEDGEMENTS

C.Y. Panicker expresses his gratitude to University Grants Commission, India for a Teacher Fellowship. Hema Tresa Varghese is thankful to the University Grants Commission, India for a minor research grant.

REFERENCES

- 1. A.R. Katrizky, C.W. Rees and E.F.V. Scriven, Comprehensive Heterocyclic Chemistry II, A Review of the literature 1982-1995, Vol. 5 and 6, Pergamon (1996).
- 2. H. Cerfontain, Mechanistic Aspects in Aromatic Sulfonation and Desulfonation, Interscience, New York (1968).
- 3. W.J. Michaley and G.W. Karaatz, US Patent, 4780127 (1998); *Chem. Abstr.*, **111**, 129017a (1989).
- 4. A. Padwa, W.H. Bullock and A.D. Dyszlewski, *J. Org. Chem.*, **55**, 955 (1990).
- 5. S.M. Mackinnon and J.Y. Wang*, Macromolecules*, **31**, 7970 (1998).
- 6. F. Paolo, M. Giorgio, M. Patrizia, P. Concetto and S. Filippo, *Macromol. Chem. Phys.*, **197**, 1007 (1996).
- 7. P.D. Magnus, *Tetrahedron*, **33**, 2019 (1977).
- 8. K.M. Roy, in ed.: W. Gerharz, Ullmann's Encyclopedia of Industrial Chemistry, Weinheim, Germany, VCH, Vol. A25, p. 487 (1985).

2632 Varghese *et al. Asian J. Chem.*

- 9. H. Mcllwain, *Brit. J. Exp. Path.*, **21**, 136 (1940).
- 10. Gaussian 03, Revision C. 02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvodor, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, a.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Wallingford CT (2004).
- 11. M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, D.J. DeFrees, J.A. Pople and M.S. Gorden, *J. Chem. Phys.*, **77**, 3654 (1982).
- 12. A.P. Scott and L. Radom, *J. Phys. Chem.*, **100**, 16503 (1996).
- 13. J.B. Foresman and E. Frisch, in: Exploring Chemistry with Electronic Structure methods: A Guide to Using Gaussian, Gaussian Pittsburg, PA (1996).
- 14. N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared spectra of Organic Structures, Wiley, New York (1994).
- 15. N.B. Colthup, L.H. Daly and S.E. Wiberly, Introduction to IR and Raman Spectroscopy, Academic Press, New York (1975).
- 16. R.M. Silverstein and F.X. Webster, Spectrometric Identification of Organic Compounds, John Wiley, Asia, edn. 6 (2003).
- 17. F.P. Urena, M.F. Gomez, J.J.L. Gonzalez and E.M. Torres, *Spectrochim. Acta*, **A59**, 2815 (2003).
- 18. T.D. Klots, *Spectrochim. Acta*, **A54**, 1451 (1988).
- 19. D. Philip, A. Eapen and G. Aruldhas, *J. Solid State Chem.*, **116**, 217 (1995).
- 20. V.A. Walters, D.L. Snavely, S.D. Colson, K.B. Wilberg, N. Kon and Wong, *J. Phys. Chem.*, **90**, 592 (1986).
- 21. J.E. Arenas, J.C. Ottero, S.P. Centeno and I.L. Tocon, *J. Soto. Surf.*, **511**, 163 (2002).
- 22. D. Philip and G. Aruldhas, *J. Raman Spectrosc.*, **21**, 211 (1990).
- 23. C.N.R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York (1963).
- 24. L.J. Ballamy, The Infrared Spectra of Complex molecules, Advances in Infrared Group Frequencies, Chapman and Hall, London, Vol. 2 (1980).
- 25. R. Blinc and D. Hadzi, Hydrogen Bonding, Pergamon, New York (1957).
- 26. J.T. Branholtz, G.E. Hall, F.G. Mann and N. Sheppard, *J. Chem. Soc.*, 868 (1959).
- 27. L.J. Ballamy, The Infrared Spectra of Complex Molecules Ed.3, Chapman and Hall, London (1975).
- 28. G.L. Cook and F.M. Church, *J. Phys. Chem.*, **61**, 458 (1957).
- 29. I. Mokhtar, Y. Takakazi and I. Patigul, *J. Zhejian Univ. Sci.*, **6B(B)**, 365 (2005).
- 30. S.M. Chackalackal and F.E. Stafford, *J. Am. Chem. Soc.*, **88**, 4815 (1996).
- 31. L. Ganguly, C.I. Jose and A.B. Biswas, *Spectrochim. Acta*, **24A**, 215 (1968).
- 32. H.G.M. Edwards, D.R. Brown, J.R. Dale and S. Plant, *J. Mol. Structr.*, **595**, 111 (2001).
- 33. C.Y. Panicker, H.T. Varghese, D. Philip and H.I.S. Nogueria, *Spectrochim. Acta*, **64A**, 744 (2006).
- 34. A. Given, H. Rothe, A. Loewenschuss and C.J. Nielsen, *Phys. Chem. Phys.*, **4**, 255 (2002).
- 35. G. Rauhut and P. Pauly, *J. Phys. Chem.*, **99**, 309 (1995).

(*Received*: 2 February 2006; *Accepted*: 27 December 2006)AJC-5297