3D QSAR Analysis of PPAR-γ Agonist and PTPIB Antagonist as Anti-hyperglycemic Agents

SHWETA KAPOOR, GOPAL GARG and SWARNLATA SARAF* Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India E-mail: swarnlata_saraf@rediffmail.com

A quantitative structure activity relationship studies were observed on series of N-(2-benzoylphenyl)-L-tyrosine for Peroxisome Proliferator Activated Receptor (PPAR γ) agonist and new azolidinediones for Protein Tyrosine Phosphatase 1B (PTP1B) antagonist. Various physicochemical parameters were calculated by chem 3D Ultra version 6.0. Several statistical regression expressions were obtained by using multiple regression analysis. Steric descriptor (PMI-X, Ovality, CMA, PMI-Z); electronic descriptor (DD, total energy); and thermodynamic descriptor (Gibb's energy, HF) were found to have significant correlation ship in both of the series. Value of correlation coefficient (r) in series 1 is found to be 0.799, statistical significance is 99 % and in series 2 r = 0.869, statistical significance is 99.9 %.

Key Words: Antihyperglycemic, 3D-QSAR, PPAR-γ, PTP1B, PMI-X, Azolidinediones, N-(2-benzoylphenyl)-L-tyrosine.

INTRODUCTION

Diabetes mellitus¹ is a disorder of glucose metabolism classified under insulin dependent diabetes mellitus (IDDM) and non-insulin dependent diabetes mellitus (NIDDM). By peripheral insulin resistance, β -cell dysfunction, hyperglycaemia and often hyperlipidemia is characteristic feature of NIDDM (Type-II)². Insulin deficiency further leads to chronic diseases such as ketocidosis, retinopathy, nephropathy, neuropathy and cardiovascular disease³.

Earlier, treatment of NIDDM done by bi-guanides, sulphonylureas, insulin secreatogogues, α -glucosides inhibitor, one novel class of antidiabetic agent that appear to be effective as a treatment for diabetes are PPAR- γ agonist *viz.*, thiazolidinediones (TZDs) such as ciglitazone, englitazone, pioglitazone and rosiglitazone⁴. PPARs⁵ are members of the nuclear hormone receptor super family of legend dependent transcription factors. PPARs play an important role in regulation of glucose metabolism, lipid metabolism and cell differentiation. Three PPAR isoforms have been identified PPAR α , PPAR γ and PPAR β . PPAR- γ^6 is mainly expressed in adipose tissue and plays an important role in insulin sensitivity. PPAR- γ receptor is attractive target for antidiabetic therapy. Thiazolidinediones were the first high affinity PPAR- γ agonist has been discovered in recent years, Vol. 19, No. 4 (2007) 3D QSAR Analysis of PPAR-y Agonist and PTPIB Antagonist 2491

but due to their unacceptable side effects TZDs have been dropped from development and market. Therefore, efforts were directed to develop antihyperglycemic agents without thiazolidinedione rings. It is decided to study QSAR such two series, which are having compounds devoid of TZD ring. Series 1 is N-(2-benzoylphenyl)-L-tyrosine⁷, which possesses 5-600 fold greater affinities for PPAR γ than corresponding TZDs. It reduce insulin resistance by lowering level of leptin and TNF- α^8 (Tumour necrosis factor).

Series-2 is new azolidinediones⁹, which are potent antagonist against the recombinant rate and human PTP1B. PTPs¹⁰ belong to growing family of enzymes, which are involved in regulation of cellular events. The role of PTP1B in diabetes has been more clearly defined as negative regulator of insulin signalling. Therefore, it was thought worthwhile to examine the structural features and physico-chemical parameters, which contribute to hypoglycaemic activity by inhibiting enzyme and by agonism of receptor. So the aim of present work is to utilize the data to predict the appropriate structures, which have more agonism and antagonism activity towards PPAR- γ receptor and PTP1B enzyme, respectively.

EXPERIMENTAL

The Ec₅₀ μ m values were converted into log Ec₅₀ from the reported *in vivo* data for the N-(2- benzoylphenyl)-L-tyrosine PPAR- γ agonist (Series-1 and Table-1). The IC₅₀ μ m values were converted into log IC₅₀ from the reported *in vivo* data for the new azolidine- diones (Series-2 and Table-4).

All computational studies were performed by using chem. 3D Ultra6.0 software from Cambridge soft cam¹¹. Energy minimization of molecules was done by fixing1000 iteration and RMS low energy derivative of 0.001 kcal/mol by MM₂ & MOPAC module. The descriptor value for all the molecules were calculated by using "compute properties module" of chem 3D version 6.0. Stepwise multiple regression analysis methods¹²⁻¹⁴ were used to performed QSAR analysis. Following statistical parameter were considered to compare the generated QSAR models, correlation coefficient(r), standard deviation (s), F_{test} (F) and tabulated F.

RESULTS AND DISCUSSION

The two series are when, subjected to QSAR analysis, we obtained QSAR equations. However, on the basis of r, s and f values, the equations that are having more significance, are

Series-1

$-\log Ec_{50} = -0.000037 * PMI-X + 0.000003 * DD - 0.00100 * BP - 0.609587$	(1)
$n = 22, r = 0.747, r^2 = 0.558, s = 0.057, F = 5.074$, Tabulated $F_{(3, 18a0.05)} = 3.16$	

2492 Kapoor et al.

Asian J. Chem.

TABLE-1
PPARγ AGONIST ACTIVITY OF SUBSTITUTED
N-(2-BENZOYLPHENYL)-L-TYROSINE
°,
X

S. No	Х	R_1	R ₂	-log EC ₅₀				
1.	OH	-NHCH(CH ₃)CH ₂ CO(C ₆ H ₅)	CH ₂ -Ph	-0.8222				
2.	NH_2	-NHCH(CH ₃)CH ₂ COC ₆ H ₅	CH ₂ -Ph	-0.8001				
3.	OCH_3	-NHCH(CH ₃)CH ₂ COC ₆ H ₅	CH ₂ -Ph	-0.8202				
4.	OH	Н	CH ₂ -Ph	-0.7482				
5.	OH	-NHC ₆ H ₈ COC ₆ H ₅	CH ₂ -Ph	-0.6981				
6.	OH	-NH C ₆ H ₄ COC ₆ H ₅	CH ₂ -Ph	-0.6794				
7.	OH	-NH C ₆ H ₄ COC ₆ H ₅	CH ₂ (CH ₃)C ₆ H ₁₀	-0.7931				
8.	OH	-NH C ₆ H ₄ COC ₆ H ₅	-CH ₂ Pyridyl (CH ₂)CH ₃	-0.8633				
9.	OH	-NHC ₆ H ₄ COC ₆ H ₅	NH 0	-0.9053				
10.	OH	-NHC ₆ H ₄ COC ₆ H ₅	2-Aminomethylethyl pyridine	-0.9053				
11	ОН	-NHC ₆ H ₇ COC ₆ H ₅	2-Aminobenzooxazolemethyl ethyl	-0.9335				
12.	ОН	-NHC ₆ H ₇ COC ₆ H ₅	2-(5-Methyl2phenyloxazole- 4vl)ethyl	-0.9764				
13	OH	-NHC6H7COC6H5	N-(2-benzooxazole)methyl ethyl	-0.8312				
14	OH	-S-C ₆ H ₄ COC ₆ H ₅	N-(2-benzooxazole)methyl ethyl	-0.7679				
15	OH	-O-C ₆ H ₄ COC ₆ H ₅	N-(2-benzooazxle)methyl ethyl	-0.7803				
16	OH	NH L	N-(2-benzooxazole)methyl ethyl	-0.8000				
17	OH	-N-(Napthyl-9,iodine)	N-(2-benzooxazole)methyl ethyl	-0.9191				
18	OH	-NHC ₆ H ₄ CH ₂ CH ₂ C ₆ H ₅	N-(2-benzooxazole)methyl ethyl	-0.8774				
19	OH	-NHC ₆ H ₄ SO ₂ C ₆ H ₅	N-(2-benzooxazole)methyl ethyl	-0.7589				
20	OH	-NHC ₆ H ₄ OC ₆ H ₅	N-(2-benzooxazole)methyl ethyl	-0.8432				
21	OH	-NHC ₆ H ₄ C(OH)C ₆ H ₅	2-Pyridyl	-0.8028				
22	OH	-NHC ₆ H ₄ -(C=N-NH ₂)C ₆ H ₅	2-Pyridyl	-0.7832				

 $-log \, Ec_{50} = -0.000026^{*}PMI - X - 0.353475^{*}Ovality + 0.000144^{*}HF$

+0.000003*DD-0.116282

(2)

 $n\,{=}\,22,\,r{=}\,0.799,\,r^{2}{=}0.638,\,s\,{=}\,0.053,\,F\,{=}\,5.280,\,Tabulated\,F_{\scriptscriptstyle(4,\,17\,a\,0.01)}\,{=}\,4.67$

The correlation matrix for eqn. 2 is given in Table-2. The observed, calculated, predicated activity are summarized in Table-3.

F-value obtained from eqn. 1 is significant at 95 % level with $F_{(3, 18 a 0.05)}$ = 3.16. F-valued obtained for eqn. 2 is significant at 99 % level with $F_{(4, 17 a 0.01)}$ = 4.67.

Observation of models clearly indicated that parameters, PMI-X (principal moment of inertia at x axis), ovality (steric descriptor), HF (heat of formation, thermodynamic descriptor) and DD (dipole dipole moment, elecVol. 19, No. 4 (2007) 3D QSAR Analysis of PPAR-γAgonist and PTPIB Antagonist 2493

tronic descriptor) play an important role for biological activity of compounds. PMI-X and ovality negatively contribute to biological activity of compounds; HF and DD positively contribute to biological activity of compounds.

TABLE-2
CORRELATION MATRIX OF PARAMETERS

	-log EC ₅₀	PMI-X	Ovality	HF	DD
-log EC ₅₀	1.000	_	_	_	_
PMI-X	0.612	1.000	_	_	_
Ovality	0.523	0.573	1.000	_	_
HF	0.203	0.090	0.136	1.000	_
DD	0.425	0.166	0.041	0.009	1.000

TABLE-3 OBSERVED, PREDICTED AND CALCULATED ACTIVITY OF N-(2-BENZOYLPHENYL)-L-TYROSINE

Carry Na	Observed	Predicted	Calculated	O-P	O-C
Comp. No	Activity	activity	Activity	Residue	Residue
1	-0.8222	-0.8446	-0.8473	-0.0226	0.0251
2	-0.8001	-0.7951	-0.7930	0.0050	0.0071
3	-0.8220	-0.8412	-0.8471	0.0210	0.0269
4	-0.7482	-0.7057	-0.6703	0.0425	0.0779
5	-0.6981	-0.7861	-0.8058	0.0880	0.1077
6	-0.6794	-0.6794	-0.8043	0.0000	0.1249
7	-0.7931	-0.8047	-0.8065	0.0116	0.0134
8	-0.8633	-0.8585	-0.8594	0.0048	0.0039
9	-0.9053	-0.90153	-0.8969	0.0040	0.0084
10	-0.9053	-0.8514	-0.8453	0.5390	0.0600
11	-0.9335	-0.8071	-0.7987	0.1264	0.1348
12	-0.9764	-0.9095	-0.8952	0.0713	0.0812
13	-0.8312	-0.8564	-0.8603	0.0252	0.0291
14	-0.7679	-0.7902	-0.8021	0.0223	0.0342
15	-0.7803	-0.8410	-0.8995	0.0607	0.1193
16	-0.8000	-0.8035	-0.8057	0.0035	0.0057
17	-0.9191	-0.9445	-0.9458	0.0254	0.0267
18	-0.8774	-0.8454	-0.8404	0.0320	0.0370
19	-0.7589	-0.7914	-0.7954	0.0325	0.0365
20	-0.8432	-0.8483	-0.8502	0.0052	0.0070
21	-0.8028	-0.8055	-0.8056	0.0027	0.0028
22	-0.7832	-0.7813	-0.7377	0.0019	0.0455

These equations and correlation matrix suggest that PMI-X (steric descriptor) is most important parameter influencing biological activity of compounds. It is having better correlation (r = 0.612) with EC₅₀ values. The correlation matrix shows that different independent variables (parameters) have very poor relation with each other as desired in QSAR analysis, on the

2494 Kapoor et al.

basis of high r-value (r = 0.799), low s-value (s = 0.053), high F-valued (F = 5.280) and statistical significance 99%, Equation 2 can be regarded as most suitable for predictability.

TABLE-4 PT1B ANTAGONIST ACTIVITY OF NEW AZOLIDINEDIONES

			L		\square	\sim	Z—X NH	
		R ₁	~		o∕∕∕_ _R		Y{O	
S.N.	R ₁	R ₂	N	POA	X	Y	Z	-log IC ₅₀
1	CF ₃ O	CH ₃	1	3	CH	S	H ₃ C-C=CHCH ₂ -	-0.1761
2	CF_3	CH ₃	1	3	Ν	0	H ₃ C-C=CHCH ₂ -	-0.2768
3	CF_3	CH ₃	1	3	Ν	S	H ₃ C-C=CHCH ₂ -	-0.5708
4	CF_3	CH ₃	1	4	Ν	0	H ₃ C-C=CHCH ₂ -	-0.6335
5	CF_3	CH_3	2	4	Ν	0	H ₃ C-C=CHCH ₂ -	-0.2042
6	CF_3	C_6H_5	1	3	Ν	0	H ₃ C-C=CHCH ₂ -	0.5229
7	CF_3	CH_3	1	3	Ν	0	-(CH ₂) ₃ -	-0.6335
8	CF_3	CH_3	1	3	Ν	0	-CH=CH-CH(CH ₃)-	-0.8451
9	CF_3	CH_3	1	3	Ν	0	-C ₃ H ₃ (CH ₃)-CH ₂ -	-0.0000
10	CF_3	CH_3	1	3	Ν	0	(n-propyl)C=CHCH ₂ -	-0.3010
11	CF_3	CH_3	1	3	Ν	0	>	-0.2778
							n-propyl	
12	CF_3	CH_3	1	3	Ν	0	(n-butyl)C=CHCH ₂ -	-0.1461
13	CF_3	CH_3	1	3	Ν	0	(n-octyl)C=CHCH ₂ -	0.3579
14	CF_3	CH_3	1	3	Ν	0	>	0.5229
	~~					~	n-octyl	
15	CF_3	CH_3	1	3	Ν	0	(4-3butyl)C=CHCH ₂ -	0.2118
16	CF_3	CH_3	1	3	Ν	0	$(I)C=CHCH_2-$	-0.2553
17	CF_3	CH_3	1	3	Ν	0	$(Ph)C=CHCH_2-$	-0.0414
18	CF_3	CH_3	1	3	Ν	0	(benzyl)C=CHCH ₂ -	-0.0969
19	CF_3	CH_3	1	3	N	0	(4-F-Ph)C=CHCH ₂ -	-0.0752
20	CF_3	CH_3	1	3	N	0	(4-Cl-Ph)C=CHCH ₂ -	-0.1461
21	CF ₃	CH ₃	1	3	N	0	$(CH_3)C=CHCH=CHCH_2-$	-0.1461

For Series 2 -log IC₅₀ = 0.007317 *CMA - 0.000002 *PMI-Z - 3.3866668 (3) $n = 21, r = 0.869, r^2 = 0.738, s = 0.208, F = 15.049$, Tabulated $F_{(2,18a\,0.001)} = 10.4$ -log IC₅₀=0.006849*CMA - 0.000003*PMI-Z-0.000844*Gibb's + 0.00014*total E - 2.820657 (4) $n = 21, r = 0.864, r^2 = 0.782, s = 0.0203, F = 10.048,$

Tabulated F $(4,16\alpha 0.001) = 7.94$ from eqn. 4.

F-value obtained for eqn. 3 and 4 is significant at 99.9 % level with $F_{(2, 18a)}$ $_{0.01}$ = 10.4 and $F_{(4,16 a 0.001)}$ = 7.94 respectively.

Correlation matrix is given in Table-5. The observed and calculated, predicted activity are tabulated in Table-6.

Vol. 19, No. 4 (2007) 3D QSAR Analysis of PPAR-7 Agonist and PTPIB Antagonist 2495

TABLE-5 CORRELATION MATRIX OF PARAMETERS

	-log IC ₅₀	PMI-Z	СМА
-log IC ₅₀	1.000	_	_
PMI-Z	0.306	1.000	_
CMA	0.834	0.122	1.00

TABLE-6
OBSERVED, PREDICTED AND CALCULATED ACTIVITY
OF NEW AZOLIDINEDIONES

Compd.	Observed	Predicted	Calculated	O-P	O-C
	Activity	Activity	Activity	Residues	Residues
1	-0.1761	-0.2867	-0.2959	0.1106	0.1198
2	-0.2788	-0.3920	-0.4054	0.1132	0.1266
3	-0.5789	-0.6266	-0.3308	0.0468	0.2490
4	-0.6365	-0.3414	-0.3204	0.2921	0.3131
5	-0.2042	-0.2603	-0.2626	0.0561	0.0584
6	0.5229	0.0509	-0.0145	0.4720	0.5084
7	-0.6335	-0.4351	-0.4089	0.1984	0.2249
8	-0.8451	-0.6668	-0.6079	0.1783	0.2372
9	0.0000	-0.2745	-0.3005	0.2745	0.3005
10	-0.3010	-0.1807	-0.1747	0.1203	0.1263
11	-0.2788	-0.2674	-0.2740	0.0114	0.0077
12	-0.1461	0.0086	0.0169	0.1375	0.1292
13	0.3979	0.5647	0.5985	0.1668	0.2006
14	0.5229	0.5647	0.5326	0.0418	0.0097
15	0.2218	-0.0883	-0.1077	0.1335	0.1147
16	-0.2553	-0.2876	-0.2919	0.0323	0.0366
17	-0.0414	-0.0051	-0.0042	0.0363	0.0372
18	0.0969	0.0561	-0.0521	0.0408	0.0448
19	-0.0792	-0.5333	-0.0527	0.4541	0.0265
20	-0.1461	0.0494	0.0626	0.0967	0.0835
21	-0.1461	-0.1123	-0.1119	0.0338	0.0342

Observations of equations indicated that parameters CMA (coonally molecular area) and PMI-Z (principle moment of inertia at z axis, steric descriptor); Gibb's energy (thermodynamic descriptor) and total energy (electronic descriptor) play an important role for biological activity of compounds (MA, Gibb's energy and total energy positively contributed to biological activity. These equations and PMI-Z negatively contribute to biological activity. These equations and correlation matrix suggest that CMA (steric descriptor) is most important parameter and having better correlation (r = 0.834) with IC₅₀. The correlation matrix shows that the different independent variables (parameters) have very poor relation with each other as desired in QSAR analysis on the basis of high r-value (r = 0.869), low value

2496 Kapoor et al.

Asian J. Chem.

(s = 0.028), high F-value (F = 15.043), less number of parameters and statistical significance 99.9 %. Eqn. 3 can be regarded as most suitable for predictability.

Present studies revealed that in series-1, the compounds, which are having high PMI-X, value having more biological activity, hence more potent PPAR- γ agonist. It also shows that aminobenzophenone (R₁) is important for activity and substitution on R₂ by increasing 1 or 2 carbon atoms on side chain between the frame work of N-(2-benzoylphenyl-Ltyrosine increase the PMI-X value and hence increased the biological activity. In series-2, elongated spaces between the azolidinediones moiety and the central aromatic position at the molecule appeared to be very important to inhibitory activity large hydrophobic groups at the vicinity of this aromatic central region produce the most potent PTP1B antagonists. The octyl analogs were the best PTP1B antagonist CMA (Steric descriptor). The most important parameter for biological activities of compounds, which are having high value of CMA.

REFERENCES

- 1. O.F. William, L.L Thomas and A.W. David, Principle of Med. Chem., edn. 4, Chapter 26, p.581.
- 2. G.M. Raver, Diabetes, 37, 1595 (1998).
- 3. D. Porte and M.W. Schwartz, *Science*, **27**, 699 (1996).
- 4. L.A. Sorbera, P.A. Leason, L. Martin and J.C. Farglitazar, *Drugs of Future*, **26**, 354 (2001).
- 5. Y.Guan and M.D. Breyer, *Kidney Internat.*, **60**, 14 (2001).
- S.A. Kliewer, H.E. Xu, M.H. Lambert and T.H. Wilson, *Recent Progr. Hormone Res.*, 56, 239 (2001).
- 7. R.H. Brad and G.B. Steven, J. Med. Chem., 41, 5020 (1998).
- 8. M. Sundu and R.H. Robert, Ann. Rev. Med. Chem., 52, 239 (2001).
- 9. S.H. Michael and I.W. Gcnawan, J. Med. Chem., 43, 995 (2000).
- 10. C.A. William, Ann. Rep. Med. Chem., 35, 230 (2000).
- 11. C.S. Chem 3D6.0, For windows and Macintosh 5.0 Cambridge Soft.Com.
- C. Hansch and A. Leo, Substitute constants for correlation analysis in chemistry and Biology, John Wiley and Sons, New York, p. 48 (1979).
- 13. N.R. Droper and H. Smith, Applied Regression Analysis, John Wiley and Sons, New York, p. 193 (1966).
- 14. S.K. Chakarvatis, S. Ajmani and S.C. Chaturvedi, Indian J. Pharm. Sci., 60, 371 (1998).