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The critical micelle concentration (CMC) of a set of 58 alkylsulfates,
alkylsulfonates, alkyltrimethyl ammonium and alkylpyridinium salts
were predicted using an artificial neural network (ANN). The multiple
linear regression (MLR) technique was used to select the important
descriptors that act as inputs for artificial neural network. These
descriptors are Balaban index, heat of formation, maximum distance
between the atoms in the molecule, Randic index and volume of the
molecule. Designed artificial neural network is a fully connected back-
propagation network that has a 5-5-1 architecture. The results obtained
using neural network were compared with those obtained using MLR
technique. Standard error of calibration and standard error of prediction
were 0.318 and 0.291, respectively for the MLR model and 0.137 and
0.122, respectively for the ANN model. These values reveal the superi-
ority of artificial neural network over MLR model in prediction of log
CMC for anionic and cationic surfactants.

Key Words: Critical micelle concentration, Surfactants, Aritifical
neural network.

INTRODUCTION

By far the largest class of surface-active materials in general use today
is the anions, which constitute ca. 70-75 % of total consumption. The
reason is the ease and low cost of manufacture and they are used in prac-
tically every type of detergent, the main application of surfactants. The
major subgroups of anionic surfactants are the alkali carboxylates or soaps,
sulfates and sulfonates1. Cationic surfactants play an important role as
antiseptic agents in cosmetics, as general fungicides and germicides and in
a number of bulk chemical applications. There are two important catego-
ries of cationic surfactants, which differ mainly in the nature of the nitro-
gen-containing group. The first consists of the alkyl nitrogen compounds
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with long-or-short chain alkyls, alkylaryls or aryls and the second category
contains heterocyclic materials typified by the pyridinium morpholinium and
imidozolinium derivatives2.

To design a new surfactant with a special property while minimizing
costs associated with trial and error research, it is desirable to study differ-
ent structural or electronic parameters affecting the surface-active proper-
ties of these compounds.

Compared to other properties, elucidation of critical micelle concen-
tration (CMC) requires more attention because it can be correlated with
industrially important characteristics of surfactant performance such as
viscosity, foam stability, detergency and dispersion ability3. CMC is
experimentally obtained by monitoring the variation of a physico-chemical
property of the solution with changing surfactant concentration4. The CMC
of ionic surfactants has been determined using many methods5-12. In
contrast to the interest in experimental methods for CMC determination,
few theoretical works and computer models of self-assembling surfactant
solutions are reported13-15. It is note worthy that the most serious theoreti-
cal studies of surfactant systems are those that have used Monte Carlo and
molecular dynamics as a tool for simulation16. Due to lack of comprehen-
sive theoretical work in this area, the development of a model for estimat-
ing the CMC of surfactants is necessary.

Artificial neural networks (ANN) have been used to a wide variety of
chemical problems such as simulation of mass spectra17, prediction of
13C NMR chemical shift18, modeling of ion interaction chromatography19-21

and quantitative structure-activity relationships (QSAR) studies22-26.
In our previous works, different groups of surfactants (cationic and

anionic) were modeled separately27. It is interesting to improve more
generic models that can be able to modeling the CMC of both anionic and
cationic surfactants. In addition it seems that some descriptors have non-
linear relation with the CMC, therefore it is desirable to use artificial neural
network for modeling. In the present study an ANN was employed to
generate a QSAR model between the molecular based structural param-
eters (descriptors) and observed CMC of a diverse set of cationic and
anionic surfactants. Then the generated ANN model was evaluated and
applied for the prediction of the CMC of a test set of surfactants. As far as
we are aware, this is the first quantitative structure-property relationships
(QSPR) study using ANN for the prediction of the CMC of some surfac-
tants.

EXPERIMENTAL

A detailed description of the theory behind a neural network has been
adequately described elsewhere28-30. Neural network can use qualitative as
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well as quantitative inputs and it does not require an explicit relationship
between the inputs and the outputs. Although in statistics the analysis is
limited to a certain number of possible interactions, more terms can be
examined for interactions by the ANN. Also, by allowing more data to be
analyzed at the same time, more complex and subtle interactions can be
studied using this technique.

Data set

Experimental values of the CMC for different anionic and cationic sur-
factants are taken from the values reported by reference30. As shown in
Table-1, the data set consists of 31 alkylsulfates [RSO4Na] and
alkanesulfonates [RSO3Na] of anionic surfactants and 27 alkyltrimethyl-
ammonium [RN+(R')3X-] and alkylpyridinium salts [RN+(φ)X-] of cationic
surfactants. The CMC values for these compounds fall in the range of 33.7
to 0.4 mol/L for anionic surfactants and 0.14 to 8.1 × 10-4 mol/L for
cationic surfactants. The data set was randomly divided into two groups,
training set consisting of 45 compounds and a prediction set including 13
molecules. The training set was used for the generation of the network and
the prediction set was used to evaluate the generated network. Table-1
shows all compounds studied in this work.

Descriptors generation

Formation of micelle from the surfactant monomers and also critical
micelle concentration (CMC) is the result of competitive interactions
between surfactant monomers and solvent molecules. The molecular struc-
ture and chemical properties of the surfactant molecules determine the type
and the extent of these interactions. Due to the diversity of the molecules
studied in this work, 24 different descriptors were calculated for each
compound in the data set. These parameters encoded different aspects of
the molecular structure and consist of electronic, geometric and topological
descriptors. Geometric descriptors were calculated using optimized Carte-
sian coordinate and van der Waals radius of each atom in the molecule32,33.
Electronic descriptors were calculated using MOPAC program (version
6)34. Topological descriptors were calculated using two-dimensional
representation of the molecules.

Some of the descriptors generated for each compound encoded similar
information about the molecular interest. Therefore, it was desirable to test
each descriptor and eliminate those that show high correlation (R > 0.95)
with each other.

For the selection of the most important descriptors that could be used
as inputs of the ANN, the linear regression technique was used based on
the construction of a linear mathematical model relating the observed CMC
to numerically encoded structural parameters. This equation was formed
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by a stepwise deletion of terms procedure (backward method)35. The
parameters appearing in the best equation showed that five descriptors are
the most important in prediction of the CMC. Table-2 shows the selected
MLR model and the names of the descriptors appearing in this model.
These descriptors are used as inputs for the generation of the ANN.

TABLE-2 
SPECIFICATIONS OF THE BEST SELECTED MODEL 

Descriptor Notation Coefficient Mean effect 
Balaban index BAL 1.013 3.288 
Heat of formation HEAT -8.45 × 10-3 1.686 
Volume of the molecule V -8.94 × 10-3 0.152 
Reciprocal of Randic index RA-1 18.713 2.233 
Reciprocal of maximum 
distance of the atoms in the 
molecule 

MAXDIS-1 2.818 -2.926 

Constant Const. -5.297  
 

Generation and evaluation of the ANN
The program for a feed-forward neural network that was trained by

back-propagation strategy was written in FORTRAN 77 in our laboratory.
All of the calculations presented in this work were carried out on a Hewlett-
Packard 800 MHz Pentium III computer. The descriptors appearing in the
MLR model were used as inputs for the generation of the ANN. Therefore,
the number of inputs in the ANN was five and the number of nodes in the
output layer was set to be one. The values of initial weights were randomly
selected from a uniform distribution that ranged between -0.3 and +0.3.
The initial biases values were set to be one. These values were optimized
during the training of the network. The value of each input was divided to
its mean value to bring the values of the input variables into the dynamic
range of the sigmoid transfer function in the ANN.

Before training, the network was optimized for the number of nodes in
the hidden layer, learning rates and momentum. The new method for
optimizing these values was reported in our previous papers17,24-26. In order
to evaluate the performance of the ANN, the standard error of calibration
(SEC) and the standard error of prediction (SEP) were used36. The net-
work was then trained using the training set by back-propagation strategy
for the optimization of the weights and biases values.

RESULTS AND DISCUSSION

Some MLR models were obtained using experimental values of log
CMC as dependent variables and calculated descriptors as independent
variables. Among these equations, two of the best models were selected
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and their statistical parameters are given in Table-3. These models were
selected due to their high values of R and F statistics and low standard
errors. Model 1 consists descriptors including Balaban (BAL) and recipro-
cal Randic (RA-1) indices, total volume of the molecule (V) and heat of
formation of the molecules (HEAT). However, in addition to these descrip-
tors, reciprocal of the maximum distances between two atoms in the
molecule (MAXDIS)-1 has also appeared in the model 2. Although the number
of descriptors in model 1 is lower than model 2 but the statistics parameters
obtained for prediction set using this model is better than that model 1.
Therefore, model 2 was chosen. The specifications of this model are shown
in Table-2. Also the correlation matrices between selected
descriptors were shown in Table-4.

TABLE-3 
COMPARISON BETWEEN THE RESULTS OBTAINED USING THE 

ANN AND MLR METHODS FOR THE SELECTED MODELS 

ANN MLR 
Model Data set 

R SE F R SE F 

1 
Training Set 
Prediction Set  

0.995 
0.989 

0.159 
0.209 

4119 
523 

0.981 
0.975 

0.314 
0.381 

256 
38 

2 
Training Set 
Prediction Set 

0.996 
0.997 

0.137 
0.122 

5933 
1664 

0.981 
0.987 

0.318 
0.291 

200 
54 

TABLE-4 
CORRELATION BETWEEN THE DESCRIPTORS OF  

THE SELECTED MODEL 

 log CMC BAL HEAT MAXDIS-1 RA-1 V 
log CMC 1.000      
BAL 0.187 1.000     
HEAT -0.824 -0.271 1.000    
MAXDIS-1 -0.680 -0.148 -0.283 1.000   
RA-1 0.520 -0.343 -0.030 0.872 1.000  
V -0.706 0.238 0.270 -0.847 -0.890 1.000 
 

In order to investigate the non-linear interactions between the different
parameters appearing in the MLR model an ANN was developed. The
generated ANN used the descriptors appearing in the MLR model as its
inputs. Before the training of the network, the parameters of the number of
nodes in hidden layer, weights and biases, learning rate and the momentum
were optimized. The procedure for the optimization of these parameters is
reported previously17,24,37. Table-5 shows the architecture and the specifi-
cations of the optimized ANN. After the optimization of ANN parameters,
the network was trained using the training set for the optimization of the
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weights and biases values. For the evaluation of the prediction power of the
network, trained ANN was used to predict the CMC values of the surfac-
tants included in the prediction set. Table-6 represents the experimental and
predicted values of the CMC using the best generated ANN for the training
and the prediction sets. The statistical parameters appearing in the MLR
and ANN models are shown in Table-3. It can be seen from this table that
standard error for the training and prediction sets are reduced from 0.318
and 0.291 for the MLR model to 0.137 and 0.122 for the ANN model,
respectively. This confirms the superiority of the ANN model over that of
the MLR model and improvement of the F statistics indicates that the
selection of the MLR descriptors as inputs was justified.

TABLE-5 
ARCHITECTURE OF THE ANN AND SPECIFICATIONS 

No. of nodes in the input layer 5 
No. of nodes in the hidden layer 5 
No. of nodes in the output layer 1 
Weights learning rate 0.5 
Biases learning rate 0.3 
Momentum 0.5 
Transfer function sigmoid 

 
Table-1 shows that the data set consists of a variety of anionic and

cationic surfactants. It can also be seen from this table that the prediction
set represents the training set reasonably.

In order to obtain the extent of contribution of each descriptor in the
CMC the mean effect of each parameter was calculated and given in Table-
2. As shows in this table Balaban index (BAL), reciprocal maximum
distance of the atoms (MAXDIS)-1 and reciprocal Randic index (RA-1)
show a large contribution to the CMC. However, the Balaban Index (BAL)
shows the largest mean effect compared to the others. This index appears
to be a convenient measure of the compactness or centrality of a larger
particular site in a molecule. Therefore, the positive effect of this param-
eter shows that the more compact the molecule the higher the CMC of that
surfactance. The reciprocal maximum distance of the atoms (MAXDIS)-1

shows a large negative effect on the CMC. The mean effect of this param-
eter in the MLR model indicates that the CMC decreases as the size of the
molecule increases. This is in agreement with the experiment that the CMC
of the surfactants decreases as the hydrophobicity of the molecule increases.
The RA-1 index quantifies the notion of molecular branching and its recipro-
cal shows a considerably positive mean effect on the CMC (Table-3). This
parameter also in agreement with the experiment shows that as the length
of a side chain increases the CMC decreases. In addition, carbon atoms on
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TABLE-6 
EXPERIMENTAL AND CALCULATED VALUES (MODEL 2) OF log CMC AND THE 

VALUES OF DESCRIPTORS EMPLOYED IN THE SELECTED MODELS 

Descriptorsb log CMC 
No.a 

BAL V HEAT RA-1 MAXDIS–1 MLR ANN Exp. 

Training set 

1 2.9904 225.7500 -289.2520 0.1686 0.0758 1.53 1.61 1.53 
2 2.9930 293.7190 -316.6660 0.1269 0.0577 0.32 0.36 0.35 
3 3.1167 293.0469 -313.6069 0.1216 0.0583 0.33 0.38 0.52 
4 3.2825 292.8594 -313.5951 0.1274 0.0574 0.61 0.69 0.63 
5 3.4329 292.4531 -313.7859 0.1274 0.0561 0.76 0.82 0.71 
6 3.7008 292.2480 -313.9406 0.1274 0.0603 1.05 0.84 0.99 
7 3.1046 309.7500 -320.4801 0.1203 0.0548 0.19 0.21 0.23 
8 3.2566 309.4219 -320.4500 0.1198 0.0577 0.35 0.28 0.34 
9 3.5207 359.8281 -320.3246 0.1198 0.0454 0.13 0.36 0.53 
10 2.9960 326.2970 -330.3670 0.1126 0.0516 -0.14 -0.29 -0.24 
11 3.3740 325.7188 -327.4993 0.1130 0.0500 0.23 0.27 0.24 
12 3.6940 326.2188 -327.7047 0.1130 0.0504 0.55 0.52 0.63 
13 3.0954 342.7188 -334.6008 0.1074 0.0494 -0.25 -0.42 -0.31 
14 3.6960 343.0313 -334.5752 0.1070 0.0508 0.35 0.19 0.37 
15 2.9900 276.2340 -309.8140 0.1269 0.0633 0.43 0.45 0.63 
16 2.9930 310.4690 -323.5160 0.1193 0.0560 0.08 -0.04 0.08 
17 3.1768 326.3910 -328.0150 0.1140 0.0539 0.06 -0.09 -0.10 
18 3.3560 325.5160 -326.7570 0.1135 0.0572 0.24 0.02 -0.05 
19 3.6530 326.1250 -327.0270 0.1135 0.0649 0.56 0.04 0.18 
20 3.7610 325.6880 -327.1180 0.1135 0.0543 0.64 0.46 0.30 
21 3.8300 326.0470 -327.1410 0.1135 0.0629 0.73 0.24 0.36 
22 2.9939 217.0000 -226.7970 0.1739 0.0759 1.18 1.57 1.76 
23 3.1872 250.4840 -240.5100 0.1482 0.0656 0.68 1.03 0.96 
24 3.0172 318.0156 -267.9180 0.1143 0.0516 -0.54 0.09 0.14 
25 3.0107 233.9063 - 13.5790 0.1916 0.0755 -0.43 -0.97 -0.85 
26 2.9939 267.8281 - 27.2744 0.1608 0.0661 -1.23 -1.13 -1.17 
27 2.9896 335.1406 - 54.7949 0.1216 0.0519 -2.38 -2.40 -2.44 
28 2.9940 370.3906 - 68.5846 0.1085 0.0467 -2.83 -2.80 -3.02 
29 3.0856 319.0781 - 46.7256 0.1281 0.0523 -2.08 -2.17 -1.85 
30 3.2850 385.9844 - 74.0813 0.1020 0.0491 -2.75 -2.71 -2.51 
31 3.3044 417.9844 - 87.9307 0.0925 0.0452 -3.09 -2.95 -2.96 
32 3.2898 385.9688 - 66.0745 0.1002 0.0509 -2.84 -2.63 -2.51 
33 3.6041 432.3438 - 87.8356 0.0871 0.0485 -3.00 -2.83 -2.68 
34 3.3326 419.1406 - 87.8898 0.0925 0.0422 -3.08 -2.92 -2.73 
35 3.3098 487.2344 -115.5410 0.0781 0.0361 -3.76 -3.82 -3.75 
36 2.9896 328.9219 - 86.5156 0.1216 0.0517 -2.06 -2.49 -2.35 
37 2.9896 313.1875 - 73.4778 0.1216 0.0523 -2.02 -2.15 -2.35 
38 2.9940 326.2969 -100.2622 0.1085 0.0473 -2.17 -2.83 -2.47 
39 2.9940 384.4531 -144.4981 0.1085 0.0426 -2.33 -3.03 -3.09 
40 2.9940 365.6094 - 87.3096 0.1085 0.0472 -2.63 -2.83 -2.85 
41 2.9982 297.4849 - 59.6895 0.1385 0.0587 -1.66 -1.80 -1.70 
42 3.4562 307.1406 - 37.6338 0.1166 0.0480 -1.91 -1.84 -1.94 
43 3.5360 268.8281 - 37.0943 0.1320 0.0542 -1.18 -1.33 -1.06 
44 3.3504 369.8438 - 78.2259 0.0946 0.0386 -2.67 -3.29 -3.20 
45 3.3504 374.0469 - 65.0733 0.0946 0.0386 -2.82 -2.34 -2.17 
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Descriptorsb log CMC 
No.a 

BAL V HEAT RA-1 MAXDIS–1 MLR ANN Exp. 

Prediction Set 

1 2.9952 258.9840 -302.9610 0.1451 0.0655 0.893 0.95 0.93 
2 3.5568 291.9375 -313.8353 0.1274 0.0606 0.860 0.66 0.83 
3 3.7031 309.5469 -320.8344 0.1198 0.0528 0.409 0.59 0.82 
4 3.5880 326.5938 -327.0954 0.1130 0.0501 0.088 0.28 0.37 
5 3.5152 326.0310 -326.9910 0.1135 0.0541 0.281 0.11 0.04 
6 3.8540 325.5160 -327.1710 0.1135 0.0542 0.512 0.34 0.05 
7 2.9893 283.8130 -254.216 0.1291 0.0578 -0.003 0.47 0.06 
8 2.9982 301.7031 - 41.0442 0.1385 0.0582 -1.896 -1.89 -1.80 
9 3.2150 352.3906 - 60.3223 0.1135 0.0552 -2.107 -2.56 -2.13 
10 3.8925 486.2969 -108.6786 0.0770 0.0489 -3.020 -3.32 -2.92 
11 2.9896 350.5938 -136.7496 0.1216 0.0461 -2.369 -2.82 -2.57 
12 2.9939 263.9375 - 45.9468 0.1608 0.0668 -1.183 -1.22 -1.22 
13 3.4562 302.3594 - 50.7142 0.1166 0.0479 -1.792 -1.96 -1.82 
aNumbers refer to the surfactants given in Table-1.  
bThe definitions of the descriptors are given in Table-3. 

                       log CMC (exp)

Fig. 1. Plot of residual vs. experimental values of log CMC

a branched hydrophobe have about half the effect of carbon atoms on a
straight chain. The positive effect of the reciprocal of the RA-1 index
confirms this observation. Heat of formation of the molecules shows a small
effect on the formation of the micelles. This reveals that topology and
geometry of the molecules are the most important factors affecting the
micelle formation. Table-4 shows the correlation between the parameters
appering in the MLR model. Inspecction of this table shows that the
descriptors can be considered as independent parameters.
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The residuals of the ANN calculated values of the CMC are plotted
against the experimental values in Fig. 1. The propagation of the residuals
in both sides of zero indicates that no systematic error exists in the develop-
ment of the ANN. Also the correlation coefficient for the plot of the ANN
calculated vs. the experimental values of log CMC was 0.997.

The results of this study demonstrate that the QSAR method using the
ANN techniques can generate a suitable model for the prediction of the
CMC of both anionic and cationic surfactants. From these results one may
conclude that the topology and geometry of the surfactants are important
in micellization process and the electronic parameters play a minor role in
this respect.
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