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The critical micelle concentration (CMC) of aset of 58 alkylsulfates,
alkylsulfonates, alkyltrimethyl ammonium and akylpyridinium salts
were predicted using an artificial neural network (ANN). The multiple
linear regression (MLR) technique was used to select the important
descriptors that act as inputs for artificial neural network. These
descriptors are Balaban index, heat of formation, maximum distance
between the atoms in the molecule, Randic index and volume of the
molecule. Designed artificial neural network isafully connected back-
propagation network that has a 5-5-1 architecture. The results obtained
using neural network were compared with those obtained using MLR
technique. Standard error of calibration and standard error of prediction
were 0.318 and 0.291, respectively for the MLR model and 0.137 and
0.122, respectively for the ANN model. These valuesreveal the superi-
ority of artificial neural network over MLR model in prediction of log
CMC for anionic and cationic surfactants.

Key Words: Critical micelle concentration, Surfactants, Aritifical
neural network.

INTRODUCTION

By far thelargest class of surface-active materialsin general use today
is the anions, which constitute ca. 70-75 % of total consumption. The
reason is the ease and low cost of manufacture and they are used in prac-
tically every type of detergent, the main application of surfactants. The
maj or subgroups of anionic surfactantsarethe alkali carboxylates or soaps,
sulfates and sulfonates'. Cationic surfactants play an important role as
antiseptic agentsin cosmetics, asgeneral fungicidesand germicidesand in
anumber of bulk chemical applications. There are two important catego-
ries of cationic surfactants, which differ mainly in the nature of the nitro-
gen-containing group. The first consists of the alkyl nitrogen compounds
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with long-or-short chain alkyls, alkylarylsor aryls and the second category
contains heterocyclic material stypified by the pyridinium morpholinium and
imidozolinium derivatives’.

To design a new surfactant with a special property while minimizing
costs associated with trial and error research, it is desirable to study differ-
ent structural or electronic parameters affecting the surface-active proper-
ties of these compounds.

Compared to other properties, elucidation of critical micelle concen-
tration (CMC) requires more attention because it can be correlated with
industrially important characteristics of surfactant performance such as
viscosity, foam stability, detergency and dispersion ability®. CMC is
experimentally obtained by monitoring the variation of aphysico-chemical
property of the solution with changing surfactant concentration®. The CMC
of ionic surfactants has been determined using many methods™. In
contrast to the interest in experimental methods for CMC determination,
few theoretical works and computer models of self-assembling surfactant
solutions are reported™™, It is note worthy that the most serious theoreti-
cal studies of surfactant systems are those that have used Monte Carlo and
molecular dynamics as atool for simulation™. Due to lack of comprehen-
sive theoretical work in this area, the development of amodel for estimat-
ing the CMC of surfactantsis necessary.

Artificial neural networks (ANN) have been used to awide variety of
chemical problems such as simulation of mass spectra'’, prediction of
3C NMR chemical shift*®, modeling of ion interaction chromatography**!
and quantitative structure-activity relationships (QSAR) studies®?.

In our previous works, different groups of surfactants (cationic and
anionic) were modeled separately?. It is interesting to improve more
generic models that can be able to modeling the CM C of both anionic and
cationic surfactants. In addition it seems that some descriptors have non-
linear relation with the CMC, thereforeitisdesirableto useartificial neural
network for modeling. In the present study an ANN was employed to
generate a QSAR model between the molecular based structural param-
eters (descriptors) and observed CMC of a diverse set of cationic and
anionic surfactants. Then the generated ANN model was evaluated and
applied for the prediction of the CMC of atest set of surfactants. Asfar as
we are aware, thisisthe first quantitative structure-property relationships
(QSPR) study using ANN for the prediction of the CMC of some surfac-
tants.

EXPERIMENTAL

A detailed description of the theory behind aneural network has been
adequately described elsewhere®®®. Neural network can use qualitative as
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well as quantitative inputs and it does not require an explicit relationship
between the inputs and the outputs. Although in statistics the analysisis
limited to a certain number of possible interactions, more terms can be
examined for interactions by the ANN. Also, by allowing more data to be
analyzed at the same time, more complex and subtle interactions can be
studied using thistechnique.

Data set

Experimental values of the CM C for different anionic and cationic sur-
factants are taken from the values reported by reference®. As shown in
Table-1, the data set consists of 31 alkylsulfates [RSO,Na] and
alkanesulfonates [RSO;Na] of anionic surfactants and 27 akyltrimethyl-
ammonium [RN*(R")sX7] and alkylpyridinium salts[RN*(¢) X ] of cationic
surfactants. The CMC valuesfor these compoundsfall in the range of 33.7
to 0.4 mol/L for anionic surfactants and 0.14 to 8.1 x 10* mol/L for
cationic surfactants. The data set was randomly divided into two groups,
training set consisting of 45 compounds and a prediction set including 13
molecules. Thetraining set was used for the generation of the network and
the prediction set was used to evaluate the generated network. Table-1
showsall compounds studied in thiswork.

Descriptors generation

Formation of micelle from the surfactant monomers and also critical
micelle concentration (CMC) is the result of competitive interactions
between surfactant monomers and solvent molecules. The molecular struc-
tureand chemical properties of the surfactant molecules determinethetype
and the extent of these interactions. Due to the diversity of the molecules
studied in this work, 24 different descriptors were calculated for each
compound in the data set. These parameters encoded different aspects of
the molecular structure and consist of electronic, geometric and topol ogical
descriptors. Geometric descriptors were cal culated using optimized Carte-
sian coordinate and van der Waals radius of each atom in the molecul e,
Electronic descriptors were calculated using MOPAC program (version
6)*. Topological descriptors were calculated using two-dimensional
representation of the molecules.

Some of the descriptors generated for each compound encoded similar
information about the molecular interest. Therefore, it was desirable to test
each descriptor and eliminate those that show high correlation (R > 0.95)
with each other.

For the selection of the most important descriptors that could be used
as inputs of the ANN, the linear regression technique was used based on
the construction of alinear mathematical model relating the observed CMC
to numerically encoded structural parameters. This equation was formed
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by a stepwise deletion of terms procedure (backward method)®. The
parameters appearing in the best equation showed that five descriptors are
the most important in prediction of the CMC. Table-2 shows the selected
MLR model and the names of the descriptors appearing in this model.
These descriptors are used as inputs for the generation of the ANN.

TABLE-2
SPECIFICATIONS OF THE BEST SELECTED MODEL
Descriptor Notation Coefficient Mean effect
Balaban index BAL 1.013 3.288
Heat of formation HEAT -8.45x 10° 1.686
Volume of the molecule Vv -8.94x 10° 0.152
Reciprocal of Randicindex ~ RA™ 18.713 2.233
Reciprocal of maximum MAXDIS* 2.818 -2.926
distance of the atomsin the
molecule
Constant Const. -5.297

Generation and evaluation of the ANN

The program for a feed-forward neural network that was trained by
back-propagation strategy was written in FORTRAN 77 in our |aboratory.
All of the calculations presented in thiswork were carried out on aHewlett-
Packard 800 MHz Pentium |11 computer. The descriptors appearing in the
MLR model were used asinputsfor the generation of the ANN. Therefore,
the number of inputsin the ANN was five and the number of nodesin the
output layer was set to be one. The values of initial weights were randomly
selected from a uniform distribution that ranged between -0.3 and +0.3.
Theinitial biases values were set to be one. These values were optimized
during the training of the network. The value of each input was divided to
its mean value to bring the values of the input variables into the dynamic
range of the sigmoid transfer function in the ANN.

Beforetraining, the network was optimized for the number of nodesin
the hidden layer, learning rates and momentum. The new method for
optimizing these values was reported in our previous papers'”?%, In order
to evaluate the performance of the ANN, the standard error of calibration
(SEC) and the standard error of prediction (SEP) were used®. The net-
work was then trained using the training set by back-propagation strategy
for the optimization of the weights and biases values.

RESULTS AND DISCUSSION

Some MLR models were obtained using experimental values of log
CMC as dependent variables and calculated descriptors as independent
variables. Among these equations, two of the best models were selected
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and their statistical parameters are given in Table-3. These models were
selected due to their high values of R and F statistics and low standard
errors. Model 1 consists descriptorsincluding Balaban (BAL) and recipro-
cal Randic (RA™) indices, total volume of the molecule (V) and heat of
formation of the molecules (HEAT). However, in addition to these descrip-
tors, reciprocal of the maximum distances between two atoms in the
molecule(MAXDIS)™ hasalso appeared inthemode! 2. Although the number
of descriptorsin model 1islower than model 2 but the stati stics parameters
obtained for prediction set using this model is better than that model 1.
Therefore, model 2 was chosen. The specifications of thismodel are shown
in Table-2. Also the correlation matrices between selected
descriptors were shown in Table-4.

TABLE-3
COMPARISON BETWEEN THE RESULTS OBTAINED USING THE
ANN AND MLR METHODS FOR THE SELECTED MODELS
ANN MLR
R SE F R SE F
TraningSet 0995 0159 4119 | 0981 0314 256

Modée Data set

! PredictionSet 0989 0209 523 | 0975 0.381 38
> Training Set 099 0137 5933 [ 0981 0318 200
PredictionSet 0997 0122 1664 | 0.987 0.291 54
TABLE-4
CORRELATION BETWEEN THE DESCRIPTORS OF
THE SELECTED MODEL

logCMC BAL HEAT MAXDIS' RA® \Y;
logCMC 1.000

BAL 0.187  1.000

HEAT 0824 -0271 1.000

MAXDIS' -0680 -0.148 -0.283 1.000

RA 0520 -0.343 -0.030 0.872 1.000

V 0706 0238 0270 -0.847  -0890 1.000

In order to investigate the non-linear interactions between the different
parameters appearing in the MLR model an ANN was developed. The
generated ANN used the descriptors appearing in the MLR model as its
inputs. Before the training of the network, the parameters of the number of
nodesin hidden layer, weights and biases, |earning rate and the momentum
were optimized. The procedure for the optimization of these parametersis
reported previously' >, Table-5 shows the architecture and the specifi-
cations of the optimized ANN. After the optimization of ANN parameters,
the network was trained using the training set for the optimization of the



Val. 19, No. 4 (2007) CMC of SomeAnionic and Cationic Surfactants 2485

weights and biases values. For the eval uation of the prediction power of the
network, trained ANN was used to predict the CMC values of the surfac-
tantsincluded in the prediction set. Table-6 representsthe experimental and
predicted values of the CM C using the best generated ANN for thetraining
and the prediction sets. The statistical parameters appearing in the MLR
and ANN models are shown in Table-3. It can be seen from this table that
standard error for the training and prediction sets are reduced from 0.318
and 0.291 for the MLR model to 0.137 and 0.122 for the ANN model,
respectively. This confirms the superiority of the ANN model over that of
the MLR model and improvement of the F statistics indicates that the
selection of the MLR descriptors as inputs was justified.

TABLE-5
ARCHITECTURE OF THE ANN AND SPECIHCATIONS

No. of nodesin the input layer 5

No. of nodesin the hidden layer 5

No. of nodesin the output layer 1

Weights learning rate 0.5

Biases learning rate 0.3
Momentum 0.5

Transfer function sigmoid

Table-1 shows that the data set consists of a variety of anionic and
cationic surfactants. It can also be seen from this table that the prediction
set represents the training set reasonably.

In order to obtain the extent of contribution of each descriptor in the
CMC the mean effect of each parameter was calculated and givenin Table-
2. As shows in this table Balaban index (BAL), reciprocal maximum
distance of the atoms (MAXDIS)™ and reciprocal Randic index (RA™)
show alarge contribution to the CM C. However, the Balaban Index (BAL)
shows the largest mean effect compared to the others. This index appears
to be a convenient measure of the compactness or centrality of a larger
particular site in a molecule. Therefore, the positive effect of this param-
eter shows that the more compact the molecul e the higher the CMC of that
surfactance. The reciprocal maximum distance of the atoms (MAXDIS)™
shows alarge negative effect on the CMC. The mean effect of this param-
eter in the MLR model indicates that the CMC decreases as the size of the
moleculeincreases. Thisisin agreement with the experiment that the CMC
of the surfactants decreases asthe hydrophobicity of the moleculeincreases.
The RA ™ index quantifiesthe notion of molecular branching and its recipro-
cal shows aconsiderably positive mean effect onthe CMC (Table-3). This
parameter also in agreement with the experiment shows that as the length
of aside chain increases the CM C decreases. | n addition, carbon atoms on
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TABLE-6
EXPERIMENTAL AND CALCULATED VALUES (MODEL 2) OF log CMC AND THE
VALUES OF DESCRIPTORS EMPLOYED IN THE SELECTED MODELS

No Descriptors’ log CMC

" BAL Y HEAT RAT MAXDIS' MLR ANN  Exp.
Training set
1 29904 2257500 -289.2520 0.1686  0.0758 153 161 153
2 29930 2937190 -316.6660 0.1269  0.0577 032 03 035
3 31167 2930469 -313.6069 0.1216  0.0583 033 038 052
4 32825 2928594 -3135951 0.1274  0.0574 061 069 063
5 34329 2924531 -313.7859 0.1274  0.0561 076 08 071
6 37008 2922480 -313.9406 0.1274  0.0603 105 084 099
7 31046 309.7500 -320.4801 0.1203  0.0548 019 021 023
8 32566 309.4219 -320.4500 0.1198  0.0577 035 028 034
9 35207 359.8281 -320.3246 0.1198  0.0454 013 036 053
10 29960 3262970 -330.3670 0.1126  0.0516 -014 -029 -0.24
11 33740 3257188 -327.4993 0.1130  0.0500 023 027 024
12 36940 3262188 -327.7047 0.1130  0.0504 055 052 063
13 30954 3427188 -334.6008 01074  0.04%4 -025 -042 -031
14 36960 343.0313 -3345752 01070  0.0508 03 019 037

15 29900 276.2340 -309.8140 0.1269 0.0633 0.43 045 0.63
16 29930 3104690 -323.5160 0.1193 0.0560 008 -004 0.08
17 3.1768 326.3910 -328.0150 0.1140 0.0539 006 -0.09 -0.10
18 3.3560 3255160 -326.7570 0.1135 0.0572 0.24 0.02 -0.05
19 3.6530 326.1250 -327.0270 0.1135 0.0649 0.56 004 018
20 3.7610 3256880 -327.1180 0.1135 0.0543 0.64 046  0.30
21 3.8300 326.0470 -327.1410 0.1135 0.0629 0.73 024 036
22 29939 217.0000 -226.7970 0.1739 0.0759 118 157 176
23 3.1872 2504840 -240.5100 0.1482 0.0656 0.68 1.03 0.96

24 30172 318.0156 -267.9180 0.1143 0.0516 -0.54 009 014
25 30107 233.9063 -135790 0.1916 0.0755 -043 -097 -0.85
26 29939 267.8281 -27.2744 0.1608 0.0661 -123  -113  -117
27 29896 3351406 -54.7949 0.1216 0.0519 -238 240 -244
28 29940 3703906 -68.5846 0.1085 0.0467 -283  -280 -3.02

29 3.0856 319.0781 -46.7256 0.1281 0.0523 -208 -217 -1.85
30 3.2850 3859844 -74.0813 0.1020 0.0491 -275 271 -251
31 3.3044 417.9844 -87.9307 0.0925 0.0452 -3.09 -295 -2.96
32 3.2898 3859688 -66.0745 0.1002 0.0509 -284 -263 -251

33 3.6041 4323438 -87.8356 0.0871 0.0485 -300 -283 -2.68
34 3.3326 419.1406 -87.8898 0.0925 0.0422 -3.08 -292 -273
35 3.3098 487.2344 -1155410 0.0781 0.0361 -376 -382 -3.75
36 29896 3289219 -86.5156 0.1216 0.0517 -206  -249 -2.35
37 29896 3131875 -73.4778 0.1216 0.0523 -202  -215 -235
38 29940 326.2969 -100.2622 0.1085 0.0473 -217  -283 -247
39 29940 3844531 -144.4981 0.1085 0.0426 -233  -303 -3.09
40 29940 3656094 -87.3096 0.1085 0.0472 -263 -283 -285
41 29982 2974849 -59.6895 0.1385 0.0587 -1l66 -1.80 -170
42 34562 307.1406 -37.6338 0.1166 0.0480 -191  -184 -194
43 35360 268.8281 -37.0943 0.1320 0.0542 -118  -1.33 -1.06
444 3.3504 369.8438 -78.2259 0.0946 0.0386 -267  -329 -3.20
45 3.3504 374.0469 -65.0733 0.0946 0.0386 -282 234 -217
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Nos Descriptors’ log CMC

" BAL Y HEAT RAT MAXDIS' MLR ANN  Exp.
Prediction Set
1 2.9952 2589840 -302.9610 01451  0.0655 0893 095 093
2 35568 201.9375 -313.8353 01274  0.0606 0860 066 083
3 37031 3095469 -320.8344 01198  0.0528 0409 059 082
4 35880 3265938 -327.0954 01130  0.0501 0088 028 037
5 35152 3260310 -326.9910 01135  0.0541 0281 011 004
6 38540 3255160 -327.1710 01135  0.0542 0512 034 005
7 29893 2838130 -254.216 01291 00578 -0003 047 0.06
8 29982 3017031 -41.0442 01385 00582 -1.896 -1.89 -1.80
9 32150 3523906 -60.3223 01135 00552  -2107 -256 -2.13
10 38925 4862969 -1086786 00770 00489  -3.020 -332 -2.92
11 29896 3505938 -136.7496 01216  0.0461  -2.369 -2.82 -257

12 29939 263.9375 -45.9468 0.1608 0.0668 -1.183 -122  -122
13 34562 3023594 -50.7142 0.1166 0.0479 -1.792  -196 -1.82
*Numbers refer to the surfactants given in Table-1.

®The definitions of the descriptors are given in Table-3.
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a branched hydrophobe have about half the effect of carbon atoms on a
straight chain. The positive effect of the reciproca of the RA™ index
confirmsthisobservation. Heat of formation of the molecules showsasmall
effect on the formation of the micelles. This reveals that topology and
geometry of the molecules are the most important factors affecting the
micelle formation. Table-4 shows the correlation between the parameters
appering in the MLR model. Inspecction of this table shows that the
descriptors can be considered as independent parameters.
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The residuals of the ANN calculated values of the CMC are plotted
against the experimental valuesin Fig. 1. The propagation of the residuals
in both sides of zero indicatesthat ho systematic error existsin the devel op-
ment of the ANN. Also the correlation coefficient for the plot of the ANN
calculated vs. the experimental values of log CMC was 0.997.

Theresults of this study demonstrate that the QSAR method using the
ANN techniques can generate a suitable model for the prediction of the
CMC of both anionic and cationic surfactants. From these results one may
conclude that the topology and geometry of the surfactants are important
in micellization process and the electronic parameters play aminor rolein
this respect.
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