Asian Journal of Chemistry

Vol. 19, No. 5 (2007), 4115-4117

NOTE

Synthesis and Characterization of Ni(II) Complex of S₃N₂H₂

MANOJ KUMAR and S.P.S. JADON* Department of Chemistry, S.V. College, Aligarh-202 001, India E-mail: sps_jadon@yahoo.co.in

On the basis of quantitative estimations, mass IR, UV and ¹H NMR spectra, the complex of $S_3N_2H_2$ with Ni(II) compound, has been assigned as $(S_3N_2H_2)_2$ ·NiSO₄·6H₂O, having quardidentated co-ordinated, Ni²⁺ ion bridged sandwich geometrical structure.

Key Words: Ni(II), S₃N₂H₂, Complex.

The complexes of hydride adducts of $S_4N_4^{-1}$ have been synthesized and reported²⁻⁹. In continution of our previous work¹⁰, the spectral investigations of the complex of $S_3N_2H_2$ with Ni(II) compound are being reported.

First of all $S_3N_2Cl_2$, as orange coloured solid, was prepared by action of thiourea with S_2Cl_2 by Roesky's method¹¹. On Na/EtOH reduction $S_3N_2Cl_2$ was changed to bright yellow mass, confirmed as $S_3N_2H_2$ by its mass and IR spectra. The complex of $S_3N_2H_2$ with Ni(II) was synthesized by refluxing DMF solutions of $S_3N_2H_2$ and NiSO₄, for about 12 h. The dark green coloured product, was separated, washed subsequently with DMF, EtOH and ether, dried and stored in vacuum desiccator over fused CaCl₂.

Quantitative estimations for constituents were done as described¹², m.w. and m.p. were determined by well known methods (*loc.cit.*).

Mass IR, electronic and ¹H NMR spectra of the complex were carried out consequently on Jeol SX-102 (FAB), Shimadzu-8201 PC (400-4000 cm⁻¹), Perkin-Elmer-Lambda-15 (200-800 nm) and Bruker-DRX-300 (300 MHz FT-NMR) spectrometers.

The complex is green coloured solid, soluble in DMSO and melts at 120.2°C. The chemical data of the complex; % found, S 43.90 (43.50), N 10.95 (10.87), H 3.14 (3.11), Ni 11.57 (11.46) and m.w. 509.80 (515.00) gmol⁻¹ leads to assign it as $(S_3N_2H_2)_2$ ·NiSO₄·6H₂O, which is supported by the prominent mass lines observed at m/z, 149, 167, 178, 209, 232, 252, 279 and 308 subsequently for the (S_2N_2) - Ni (M-2), $(S_2N_2H_2)$ -Ni-N, S_2N_2 -Ni-N₂ (M-1), (S_3N_2) -Ni-N₂ (M-2), $(S_3N_2H_2)$ -Ni-S-N (M+1), $(S_3N_2H_2)_2$,

4116 Kumar et al.

 (S_3N_2) ·NiSO₄ and $(S_3N_2)_2$ ·Ni (M+1) fragments in its mass spectrum (Table-1), suggesting that two molecules of $(S_3N_2H_2)$ have linked to one mol of NiSO₄·6H₂O during the reaction, producing the quadridentated complex.

To confirm the nature of bonding, its IR spectrum (Table-1), recorded, is compared to that of ligand, $(S_3N_2H_2)$. The presence of bands, N—S \rightarrow Ni, S—N \rightarrow Ni, S—N—H, N—H, O—H and SO₄²⁻ ions are inferred by the consequent vibrations at 631 (d), 760 (bw), 1102 (sw), 1628, 3371, 984 (sw) cm⁻¹, explaining the S₃N₂H₂ has coordinated to Ni²⁺ ion through its both S and N atoms.

TABLE-1	
MASS AND IR SPECTRA OF THE COMPLEX	$(S_3N_2H_2)_2$ ·NiSO ₄ ·6H ₂ O

Mass parameters		IR spectra data		
m/z	Fragments	Vibrations (cm ⁻¹)	Bands assigned	Force const. K N / m
149	S ₂ N ₂ -Ni (M-2)	461ws	SO4 ²⁻	1.0512
167	$(S_2N_2H_2)$ -Ni-N	631d	N—S→Ni	1.9723
171	(S ₃ N ₂)-S-N (M+1)	760bw	S—N→Ni	2.8610
178	S_2N_2 -Ni-N ₂ (M+1)	—	_	_
197	(S_3N_2) -Ni—N	984ws	SO_4^{2-}	4.7881
209	(S ₃ N ₂)-N ₂ -Ni (M-2)	1102d	S—N—H	0.6511
232	$(S_3N_2H_2)$ -S-N-Ni	1401w	S—N—H	1.0837
252	$(S_3N_2H_2)_2$	1628b	N—H	3.0882
279	(S_3N_2) -NiSO ₄	2365ds	δ Ν—Η	3.0882
308	$(S_3N_2)_2$ -Ni (M+1)	3371b	O—H	14.3275

Two peaks at 200 and 240 nm have occured in its electronic spectrum. The former band is due to ionic environment and charge transfer transition, caused by Ni²⁺ ions, while latter assignment is corresponding to d_{π} - p_{π} transitions of $S_3N_2H_2$ ring. The absence of other bands which generally appears for Ni²⁺ ions, expound the coordination of $S_3N_2H_2$ molecule to nickel sulphate.

If ionic displacement has occured during the reaction of $S_3N_2H_2$ with NiSO₄ librating H₂SO₄, the signals for N—H bands should not appear in its proton NMR spectrum, as observed at the chemical shift, δ 2.5153 to 2.985 ppm for N—H bands as found in amino compounds, expressing the quadridentative linkage of two $S_3N_2H_2$ molecule to nickel sulphate, without evaluation of H₂SO₄ or in its any form. Therefore, geometrical strucutre of (S₃N₂H₂)₂·NiSO₄·6H₂O, may be shown as Fig. 1.

Vol. 19, No. 5 (2007)

Ni(II) Complex of $S_3N_2H_2$ 4117

Fig. 1. Proposed structure of the complex [(S₃N₂H₂)₂·Ni]SO₄·6H₂O

ACKNOWLEDGEMENT

Authors wish to express their thanks to Dr. K.P. Madhusudanan, CDRI, Lucknow, India for providing instrumental facilities.

REFERENCES

- 1. M.B. Goehring, Quartz Rev., 437 (1956).
- 2. H. Schroeder and O. Glemser, Z. Anorg. Chem., 298, 78 (1959).
- 3. H.K. Sharma and S.P.S. Jadon, J. Indian Chem. Soc., 65, 61 (1988).
- 4. H.K. Sharma and S.P.S. Jadon, Indian J. Chem., 28, 1007 (1989).
- 5. A.K. Yadav, G.J. Mishra and S.P.S. Jadon, J. Indian Chem. Soc., 67, 65 (1990).
- H.K. Sharma, B. Singh, M.P. Singh, R. Swarup and S.P.S. Jadon, Synthetic Metals, Vol. 55-57, p. 618 (1993).
- 7. J.D. Woollins, R. Grinter, M.K. Johnson and A.J. Thomson, J. Chem. Soc. Dalton Trans., **10**, 1910 (1980).
- 8. U.K. Tripathi, S.C. Tripathi and S.P.S. Jadon, Asian J. Chem., 17, 1221 (2005).
- 9. Shalini and S.P.S. Jadon, Asian J. Chem., 17, 1325 (2005).
- 10. M. Kumar and S.P.S. Jadon, Asian J. Chem., 18, 1566 (2006).
- 11. H.W. Roesky, W. Schaper, O. Peterson and T. Muller, Chem. Ber., 110, 2695 (1977).
- 12. A.I. Vogel's, Text Book Quantitative Inorganic Analysis ELBS Publishers (1968).

(Received: 14 March 2006; Accepted: 14 March 2007) AJC-5526