Asian Journal of Chemistry

Vol. 19, No. 7 (2007), 5775-5777

NOTE

Mass and ¹H NMR Spectral Characterization of the Reaction Product of S₄N₃Cl and Thiourea

ANJUL SINGH[†] and S.P.S. JADON^{*} Department of Chemistry, S.V. College, Aligarh-202 001, India E-mail: anjul_singh@rediffmail.com

The reaction of thiotrithiazyl chloride (S_4N_3Cl) and thiourea was carried out in DMF. The product, obtained, was characterized on the basis of Mass and ¹H NMR spectra and is formulated as $(S_4N_3)_2NCSNH_2$.

Key Words: Thiotrithiazyl chloride, Thiourea, Symmetrical geometry.

Thiotrithiazyl chloride $(S_4N_3Cl)^1$ is the most stable cyclic derivative of tetrasulfur tetranitride^{2,3}. It has the tendency to combine with metal ions as well as organic compounds. The reaction of S_4N_3Cl with various transition metal ions⁴⁻⁷ and also with triphenyl phosphine have already been studied. The reaction between S_4N_3Cl and NH_2CSNH_2 have not been investigated till now. Therefore, product, formed and studied spectrometrically, is being presented herewith.

All the chemicals used, were of AR grade. S_4N_3Cl was prepared by the reaction of S_4N_4 with acetyl chloride as reported (Loc.cit.). The product was obtained by the refluxing of S_4N_3Cl and thiourea in DMF for 6 h. The solid obtained was filtered, washed with DMF and ether. Mass and ¹H NMR spectrum were recorded on a Jeol SX 102 (FAB) spectrometer and Bruker DRX-300, respectively. IR Spectrum was recorded on Shimadzu 8201 P.C. spectrophotometer. Elemental analysis were obtained from Perkin-Elmer CHN microanalyzer. Molecular weight was determined by Rast method using camphor as a solvent.

The product, obtained, after refluxing S_4N_3Cl and thiourea for 6 h, is white in colour and sparingly soluble in DMSO. Analytical data %: found (cal); S 69.62 (69.56); N 27.10 (27.05); C 2.90 (2.89); H 0.50 (0.48) and molecular weight 412.5 (414.0) g/mol assign the product as $(S_4N_3)_2NCSNH_2$.

[†]Department of Chemistry, D.S. College, Aligarh-202 001, India.

5776 Singh et al.

Asian J. Chem.

Mass spectrum shows the prominent mass lines at m/z ratio 89, 107, 199, 232, 363 due to NNHCSNH₂, SNNHCSNH₂, S₄N₃NHC, S₄N₃NHCS, $(S_4N_3)_2NC$ fragments, respectively along with the other peaks at m/z 91, 107, 171, 352 for the fragments of S₄N₃Cl as presented in Table-1.

MASS SPECTRAL DATA OF THE ADDUCT	
m/z ratio	Bands assigned
89	NNHCSNH ₂
91	S_2N_2 (M-1)
107	S_2N_3 (M+1)
120	S-N-NHCSNH ₂ (M-1)
138	N-S-NNHCSNH ₂ (M+3)
171	S_4N_3 (M+1)
199	S_4N_3NHC (M+2)
232	S ₄ N ₃ NHC-S (M+3)
241	S_4N_3 -N-CSN (M-1)
274	$S_4N_3NCS_2N$
324	S ₄ N ₃ S ₂ N N-C=S-NH ₂ (M+2)
352	(S ₄ N ₃) ₂ N (M-2)
363	$(S_4N_3)_2$ NC (M-3)

TABLE-1 MASS SPECTRAL DATA OF THE ADDUCT

The reaction between S_4N_3Cl and thiourea may be expressed as $2S_4N_3Cl + NH_2CSNH_2 \rightarrow (S_4N_3)_2NCSNH_2 + 2HCl$ (m/z = 414)

The formation of adduct may be proved by the fragments, formed, during the decomposition of $(S_4N_3)_2NCSNH_2$ with the loss of some groups and indicating the prominent mass lines for the various fragments as explained below:

/
)
)
)

Above fragmentation process supports the molecular formula $(S_4N_3)_2NCSNH_2$

The formation of $(S_4N_3)_2NCSNH_2$ is also supported by IR spectrum⁸. IR spectrum shows vibrations at 619, 735, 1110, 1404, 1464, 1591, 2067 cm⁻¹ corresponding to S-S band in S₄N₃ ring, C=S str., S-N band of S₄N₃ ring, SNH band, N-C-N str, C=N str and NCS str, respectively, confirming the presence of these groups in the adduct. Vol. 19, No. 7 (2007)

Reaction of S₄N₃Cl and Thiourea 5777

For confirm the geometrical structure of the reaction product of S₄N₃Cl and thiourea its ¹H NMR spectrum is recorded. It has two signals at chemical shift δ - 0.001 and 1.238 ppm for the NH group of thiourea. The other signals in the range of δ 2:284-3.370 and δ 6.613-7.488 ppm are due to N atom present in the two S₄N₃⁻; ion. These two groups has been separated by other N-atom of thioureate group which shows a signals at δ 5.415 ppm inferring that two S₄N₃⁻ ion has separately reacted with H-atoms of terminal N-atoms of thiourea. A signal near to δ 5.415 ppm has faded due to other H-atoms attached to N-atoms of thiourea. ¹H NMR has two symmetrical groups of signals suggesting a symmetrical geometry of this product as shown in Fig. 1.

Fig. 1. Structure of (S₄N₃)₂NCSNH₂

ACKNOWLEDGEMENTS

The authors are grateful to Dr. K.P. Madhusudan, Director, C.D.R.I. Lucknow and Head, Department of Chemistry, G.N.D. University, Amritsar for providing instrumental facilities.

REFERENCES

- 1. W.L. Jolly, K.D. Maguir and D. Robinovich, Inorg. Chem., 2, 1304 (1963).
- 2. M.B. Goehring, Progr. Inorg. Chem., 1, 207 (1959).
- 3. M.B. Goehring and H.P. Latscha, Z. Naturforsch, 17B, 125 (1962).
- 4. 5. S.S. Yadav and S.P.S. Jadon, J. Indian Chem. Soc., 79, 751 (2002).
- S.S. Yadav and S.P.S. Jadon, Ultra Sci., 15, 143 (2003).
- 6. S. Upadhyay and S.P.S. Jadon, Asian J. Chem., 15, 1181 (2003).
- 7. S. Upadhyay and S.P.S. Jadon, Asian J. Chem., 15, 1065 (2003).
- K. Nakamoto, The Infrared and Raman spectra of Inorganic and Coordination 8. Compunds, John Wiley & Sons, Inc., New York (1978).

(Received: 11 September 2006; Accepted: 22 June 2007) AJC-5771