Asian Journal of Chemistry

Structural Studies of a Hemicellulose Fraction Isolated from Groundnut Shell (Arachis hypogea)

A. HANNAN KHAN[†], SHAKILA RAHMAN^{*} and M. SHAHJAHAN[†] Department of Chemistry, Bangladesh University of Engineering and Technology Dhaka-1000, Bangladesh E-mail: shaki@chem.buet.ac.bd

The groundnut shell was found to contain moisture (8.50 %), ash (3.01 %), lignin (23.60 %), protein (6.30 %), silica (0.69 %), crude fibre (65.94 %) and total carbohydrate (15.00 %). Hemicellulose fractions were isolated from groundnut shell by successive extractions with alkali of increasing concentration. A xylan fraction was isolated by extraction with 1 M aqueous sodium hydroxide. Sugar, methylation, specific rotation and IR spectral analyses of the purified hemicellulose revealed that the xylan obtained from groundnut shell was essentially $(1\rightarrow 4)$ - β -linked and had a 4-O-methylglucuronopyranosyl unit substituted at position 2 of almost 13th xylose residues.

Key Words: *Arachis hypogea, Fabaceae*, Hemicellulose, Silylation, Decarboxylation, Alditol acetates and Xylan.

INTRODUCTION

Groundnut, also called peanut, earthnut, monkeynut¹ or goober, despite its several common names is not a true nut but the pod or legume, of *Arachis hypogea* (family *Fabaceae*), which has the peculiar habit of ripening under ground. Groundnut shell has been reported² to be useful in the treatment of hypertension. The Chinese report described the isolation of β -sitosterol, luteolin, daucosterol and an unidentified saponin. Analysis of carbohydrate materials has also been reported³ by Indian workers. Hemicellulose has recently shown the possibility of wide use in paper industry⁴, food^{5,6} and medicine⁷. Modified and sulphated xylan⁸ is used as a blood-anticoagulant. This paper describes the isolation of a hemicellulose xylan from the groundnut shell.

EXPERIMENTAL

Matured groundnuts (*Arachis hypogea*) were collected from the neighbourhood of Dhaka city. The outer shells of the nuts were separated manually, sun-dried and grounded into powder.

[†]Department of Chemistry, Jagannath University, Dhaka, Bangladesh.

Vol. 19, No. 7 (2007) Hemicellulose Fraction Isolated from Groundnut Shell 5689

Moisture, ash, lignin⁹, protein¹⁰, silica¹¹, crude fibre¹⁰ and total carbohydrate¹⁰ contents (Table-1) of the powdered groundnut shell were determined by following standard procedures. All evaporations were carried out under reduced pressure at bath temperatures not exceeding 40°C.

TOTAL CARBOHYDRATE CONTENTS OF THE POWDERED GROUNDNUT SHELL			
Constituents	Quantity (%)		
Moisture	8.50		
Ash	3.01		
Lignin	23.60		
Protein	6.30		
Silica	0.69		
Crude fibre	65.94		
Total carbohydrate	15.00		

TABLE-1 MOISTURE, ASH, LIGNIN, PROTEIN, SILICA, CRUDE FIBRE AND TOTAL CARBOHYDRATE CONTENTS OF THE POWDERED GROUNDNUT SHELL

Paper chromatography¹²: Paper chromatograms were run on Whatmann No. 1 filter paper. The following solvent systems were used (v/v proportions): (a) ethyl acetate:pyridine:water $(10:4:3)^{13}$ and (b) 1-butanol:pyridine:water (6:4:3).

A saturated aqueous solution of aniline oxalate was used as spray reagent followed by heating at 120°C for *ca*. 5 min.

Uronic acids were determined by a decarboxylation method¹⁴. IR¹⁵ spectra (thin film) of hemicelluloses were recorded on a PYE UNICAM SP1000 Infra red spectrophotometer using nujol mull. Gas liquid chromatography (glc) was conducted with a Packard 427 instrument fitted with a flame ionization detector and quartz capillary column (28 m × 0.02 cm i.d.). Separations were performed on (a) OV-275 at 140-200°C. 4°C min⁻¹ (alditol acetates), (b) OV-225 at 170°C, isotherm (partially methylated alditol acetates) and CP Sil 5 at 150-230°C, 2°C min⁻¹ (trimethylsilyl derivatives).

Extraction of the plant material: Powdered groundnut shell 200 g was refluxed with aqueous 80 % ethanol (5×900 mL, 0.5 h each time) followed by chloroform (3×600 mL, 0.5 h each time). The dried extractive free material was treated with water (3×800 mL, 5 h each time) on a boiling water bath under reflux. All the extractives were evaporated to dryness using rotary vacuum evaporator followed by freeze-drying and the extracts were 3.5, 1.25 and 4.68 %, respectively.

After water extraction, dried extractive free powder 100 g was treated with aqueous sodium hydroxide (1 M, 2×700 mL) for 20 h at room temperature with stirring in an atmosphere of nitrogen. The combined extracts

5690 Khan et al.

were neutralized with aqueous 50 % acetic acid. The neutral extract was dialyzed, concentrated to a suitable volume and freeze-dried, affording hemicellulose P_1 (5.2 g). Successive extraction of the residual material with 2.5 and 4.5 M sodium hydroxide gave hemicellulose fractions P_2 (3.7 g) and P_3 (0.25 g), respectively.

Analysis of aqueous 80 % ethanol extract: A small portion (100 mg) of aq. 80 % ethanol extract was dissolved in ethanol and examined by paper chromatography in solvents A and B using spray solution followed by heating at 120°C for *ca*. 5 min. It indicated the presence of D-xylose in large quantity. Again a part of the neutral fraction (5 mg) was analyzed by trimethylsilylation method where *myo* inositol (1 mg) was used as the internal standard. The resulting trimethylsilyl derivatives were analyzed by GLC (Table-2).

TABLE-2			
RELATIVE COMPOSITION OF SUGAR CONSTITUENTS OF 80 %			
ETHANOL EXTRACT			

Sugar residues	Sugar constituents (%)		
L-Rhamnose	2.8		
L-Xylose	60.9		
D-Mannose	14.7		
D-Glucose	21.6		

Fractionation of hemicellulose P₁

Ion-exchange chromatography: A small portion (400 mg) of P₁ was dissolved in 30 mL of water containing a few drops of 1 M aqueous sodium hydroxide and applied on a DEAE-Sephadex A-50 column (2.7 × 68cm) in phosphate buffer (0.1 M, pH 6.5). The column was first eluted with the same buffer and the fractions were monitored by the phenol-sulphuric acid method¹⁶. No carbohydrate-containing fraction was obtained. Later the column was eluted with the buffer containing 1 M sodium chloride (2 L, pH 5.8). Absorbance of the coloured solutions resulting from the treatment of the fractions with phenol sulphuric acid was measured at 485 nm with reference to a blank test. Fractions 85-120 had maximum concentrations of carbohydrates. These fractions were combined, dialyzed and freeze-dried which afforded the hemicellulose P₄ (205 mg).

Gel filtration: The purified hemicellulose P_4 (190 mg) in phosphate buffer (12 mL, pH 7.0) was applied to Sepharose CL-2B gel column. The column was eluted with the same buffer and the fractions (3 mL) were tested by the phenol-sulphuric acid method. Only a single elution curve was obtained. The fractions containing polysaccharide were combined, dialyzed and freeze-dried P_4 (150 mg). The specific rotation of purified hemicellulose P_4 was measured and found to be -92°.

Analysis of hemicellulose P_4 : A small portion (100 mg) of purified hemicellulose fraction P_4 was hydrolyzed with 0.5 M sulphuric acid and the hydrolyzate was examined by paper chromatography in solvents A and B using the spray reagent followed by heating. The syrupy hydrolyzate revealed spots corresponding to xylose and 4-O-methyl-glucuronic acid with trace amounts of rhamnose, arabinose, galactose and glucose. Again hemicellulose fraction P_4 (5 mg) was hydrolyzed with 0.5 M trifluoroacetic acid 2 mL with *myo*-inositol (1 mg) as internal standard. The resulting neutral sugars were analyzed by GLC as their alditol acetates¹⁷ (Table-3).

TABLE-3 RELATIVE COMPOSITION OF THE SUGAR CONSTITUENTS OF HEMICELLULOSE P_4

Sugar residues	Sugar constituents (%)	
L-Rhamnose	6.2	
L-Arabinose	6.3	
D-Xylose	70.8	
D-Mannose	2.0	
D-Galactose	3.9	
D-Glucose	3.0	
Uronic acid	7.8	

Carboxyl-reduction¹⁸: Purified hemicellulose P_4 (25 mg) was dissolved in water (5 mL) and the pH was adjusted to 4.75 by addition of 0.1 M hydrochloric acid. N-(3-dimethyl aminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC, 200 mg) was added to the solution and the pH was kept at 4.75 for 0.5 h. Aqueous sodium borohydride (500 mg in 5 mL of water) was added to the solution drop-wise while maintaining the pH at 7.0 by adding 2 M hydrochloric acid. The solution was kept at pH 7.0 for 2 h. Later the excess borohydride was destroyed with aqueous 50 % acetic acid and the reaction mixture was dialyzed for 48 h against running distilled water. The dialysate was concentrated and freeze-dried (20 mg, CRP₄). A small portion (5 mg) of CRP₄ was hydrolyzed with 0.5 M, TFA with *myo*-inositol as internal standard. The resulting hydrolyzate was reduced by sodium borohydride, converted to alditol acetates and analyzed by GLC (Table-4).

5692 Khan et al.

Asian J. Chem.

SUGAR ANALYSIS OF CRP ₄			
Sugar	Relative mole (%) of CRP_4		
L-Rhamnose	6.0		
L-Arabinose	4.5		
D-Xylose	72.9		
D-Galactose	4.0		
D-Glucose	2.9		
D-Mannose	1.7		
4-O-Methylglucose	8.0		

TABLE-4 SUGAR ANALYSIS OF CRP

Methylation analysis: The carboxyl-reduced hemicellulose CRP₄ (5 mg) was methylated with dimsyl sodium (2 M, 3 mL) and methyl iodide (4 mL) in DMSO (5 mL) following the Hakomori $^{\rm 19}$ procedure. The methylated polysaccharide was hydrolysed and the partially methylated sugars were analyzed as their alditol acetates with glc^{20} (Table-5).

METHYLATION ANALYSIS OF CRP ₄					
Sugar and location of methoxyl groups	Retention time*	Mole (%)	Mode of Linkage		
2, 3, 4-tri-O-Methylxylose	0.65	0.6	$\operatorname{Xyl} p \stackrel{\mathrm{l}}{\hookrightarrow}$		
2, 3-di-O-Methylxylose	1.19	82.8	$\stackrel{4}{\rightarrow}$)Xylp ($\stackrel{1}{\rightarrow}$		
3-O-Methylxylose	1.95	8.6	$\stackrel{4}{\rightarrow})Xylp \stackrel{1}{(\rightarrow} \uparrow ^{2}$		
2,3,4,6-tetra-O- Methylglucose	1.00	8.0	4-O-methyl-Glcp A $(\stackrel{l}{\rightarrow}$		

TABLE-5

*Retention time of the corresponding alditol acetate relative to that of 1,5-di-O-acetyl-2, 3, 4, 6-tetra-O-methyl-D-glucitol on a OV-225 glass capillary column at 170°C.

RESULTS AND DISCUSSION

Moisture, ash, lignin, silica, crude fibre and carbohydrates contents (Table-1) of the sun-dried and powdered groundnut shell were determined by following standard procedures. Low-molecular weight materials and lipids were extracted from the shell by extraction with aq. 80 % ethanol and chloroform, respectively. Water-soluble polysaccharide was separated from the shell by extraction with boiling water.

Silylation (Table-2) of the 80 % ethanol extracts showed that it contained the highest amount of L-xylose (60.9 %).

Vol. 19, No. 7 (2007) Hemicellulose Fraction Isolated from Groundnut Shell 5693

Hemicellulose fraction from the extractive free groundnut shell were isolated by successive extraction with 1.0, 2.5 and 4.5 M aqueous sodium hydroxide. Hemicellulose P_1 on passage through DEAE-Sephadex A-50 ion-exchange column did not produce any neutral fraction and gave only one acidic fraction. This acidic polysaccharide was further purified on Sepharose CL-2B gel column where it produced a symmetrical elution curve of the purified hemicellulose P_4 .

Infrared absorption spectrum of hemicellulose, P_4 showed absorption at 3420 cm⁻¹ for O-H str., 2920 cm⁻¹ for C-H str. and band at 1600 cm⁻¹ was due to C-O str. of COOH group. The aforesaid absorption bands clearly indicate the presence of uronic acid in the polymer, P_4 .

Sugar analysis of the purified hemicellulose P_4 showed that it contained 7.8 % of uronic acid. Again sugar analysis of the carboxyl-reduced hemicellulose (CRP₄) showed the presence of 8.0 % of 4-O-methyl-glucose. This clearly indicated that the uronic acid was 4-O-methylglucuronic acid. As the D-galactose and D-glucose contents did not increase in any significant proportion, it may be said that all the glucuronic acid was 4-Omethylated and there was no free uronic acid residue in the polymer.

Purified and carboxyl-reduced polymer (CRP₄) fromgroundnut shell was subjected to methylation by the Hakomori⁻¹⁹ method. Analysis of the fully methylated polymer by GLC (Table-5) showed the presence of 82.8 % of 2, 3-di-O-methylxylose indicating that the main chain was comprised of $(1\rightarrow 4)$ -linked D-xylose. The presence of 8.6 % of 3-O-methylxylose indicated branching of D-xylose residues at position 2.

2,3,4,6-Tetra-O-methylglucose originated from carboxyl-reduced 4-O-methylglucuronic acid residues. Small amount of 2,3,4-tri-Omethylxylose resulted from the non-reducing end groups of the xylan polymer.

From the relative amounts of non-reducing terminal xylose residues, revealed by the methylation analysis 2,3,4-tri-O-methylxylose, the molecular weight of the hemicellulose from groundnut shell was calculated to be 22,700. Again this value of molecular weight was probably too high as acetylated 2,3,4-tri-O-methylxylose may be lost during evaporation.

From the sugar and methylation analyses and other evidences it was concluded that the xylan obtained by 1 M alkali extraction of the extractive free groundnut shell was essentially $(1\rightarrow 4)$ - β -linked xylan that had a 4-O-methylglucuronopyranosyl unit substituted at position 2 of almost 13th xylose residues. The average repeating unit of xylan is tentatively shown below.

$$[\{ \rightarrow 4 \} - \beta - xylp - (1)_{12} \longrightarrow 4 \} - \beta - xylp - (1]_n$$

$$\uparrow 2$$

$$\downarrow 1$$

$$4 - O - Me - Glc pA$$

5694 Khan et al.

Asian J. Chem.

Thus the xylan obtained by 1 M alkali-extraction of the extractive-free groundnut shell resembled xylan from jute stem²¹ and med rib of tobacco stalks²². The polymer, P_4 contained lower uronic acid content. Therefore, it may be useful for chemical modification leading to biologically important products²³. The protecting effects of xylans have been utilized in reducing intraluminal pressures in diverticular disease²⁴.

ACKNOWLEDGEMENTS

The authors thank Dr. Muzaffar Husain and Mr. S.K. Roy of BCSIR, Dhaka, for GLC analyses of the samples.

REFERENCES

- 1. J.D. Hooker, Flora of British India, 161 (1973).
- Chun-Hsien Wei, Shuching Yu, Chih-Tung Kou, Hsing-Hsing Ho and Chu-Fen Mou, Yao Hsuch tung pao, 15, 44 (1980); Chem. Abstr., 95, 49262n (1981).
- 3. B.R. Murthy and V.R. Srinivasan, J. Sci. Ind. Res. (India), 16C, 59 (1957).
- 4. L.E. Wise and K.H. Lauer, in ed.: C.E. Libby, Cellulose and Hemicelluloses in Pulp and Paper Science and Technology, Vol. 1, p. 67 (1962).
- 5. R.J. Ferrier and P.M. Collins, Monosaccharide Chemistry, Penguin Books Ltd., Harmondsworth, Middlesex, England, p. 249 (1972).
- 6. R.C. Torres, J.B. Monalo and F.E. Anzaldo, Abstract Papers, The First Princess Chulabhorn Science Congress, Bangkok, Thailand, p. 162 (1987).
- 7. S. Svensson, A. Lindberg and A. Lundblad, Chem. Abstr., 103, 16846m (1985).
- 8. G. Kindness, F.B. Williamson and W.F. Long, *Biochem. Biophys. Res. Commun.*, **88**, 1062 (1979).
- 9. A.J. Mian and T.E. Timell, *Tappi*, **44**, 48 (1990).
- A Manual of Laboratory Techniques, National Inst. of Nutrition, Indian Council of Medical Research, Hyderabad-500007, India (1976).
- 11. L. Banos, Manual of Physiological Studies of Rice, IRRI, Philippines (1976).
- 12. R. Stock and C.B.F. Rice, Chromatographic Methods, edn. 3 (1974).
- 13. A.R. Archibald and D.J. Manners, Biochem. J., 73, 292 (1959).
- 14. M. Bylund and A. Donetzhuber, Sven. Papperstidn, 15, 505 (1968).
- 15. W. Kem, Organic Spectroscopy, edn. 3, p. 63, 66 (1991).
- M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, *Anal, Chem.*, 28, 350 (1955).
- 17. J.S. Sawardeker, J.H. Sloneker and A. Jeanes, Anal. Chem., 37, 1602 (1956).
- 18. R.L. Taylor and H.E. Conrad, Biochemistry, 11, 1383 (1972).
- 19. S. Hakomori, J. Biochem., 55, 205 (1964).
- 20. J.A. Lomax, A.H. Gordon and A. Chesson, Carbohydr. Res., 138, 177 (1985).
- 21. Q.N. Haq, O. Larm, M. Mosihuzzamn, N. Nahar and M. Nizamuddin, *Swedish J. Gri. Res.*, **17**, 63 (1999).
- 22. S. Eda, F. Watanabe and K. Kato, Agric. Biol. Chem., 40, 424 (1976).
- 23. J. Hoffman, O. Larm, L.O. Andersson and G. Soderstrom, *Carbohydr. Polym.*, **2**, 115 (1982).
- 24. S.S. Stivala, V. Crescenzi and I.C.M. Dea, Industrial polysaccharides, The Impact of Biotechnology and Advanced Methodologies (2000).