Asian Journal of Chemistry

Vol. 19, No. 7 (2007), 5229-5234

Synthesis and Crystal Structure of a New 3D-Supramolecular Complex: [Cu(phen)(C₂O₄)(H₂O)]·H₂O

JIAN-HONG BI*, LING-TAO KONG[†] and ZI-XIAN HUANG[‡] Department of Chemistry, Anhui Institute of Education, Hefei-230061, P.R. China Tel: (86)(551)2813061

E-mail: bijianhon @ahieedu.net.cn; hxx010101@126.com; jhb@mail.hf.ah.cn

A novel complex [Cu(phen)(C₂O₄)(H₂O)]·H₂O, where phen = 1,10phenanthroline, was synthesized and characterized by IR spectra, elemental analysis and single-crystal X-ray. The crystal structure analysis shows that the copper(II) is a five-coordinated in a slightly distorted square pyramidal geometry environment. The complex forms layer structure and packs in 3D-superamolecular network through some π - π stacking interactions and intermolecular hydrogen bonds. The crystal is monoclinic, space group P2(1)/c with unit cell parameters: a = 8.359(2)Å, b = 9.646(3)Å, c = 17.384(5)Å, α = 90°, β =103.523(4)°, γ = 90°, V = 1362.8(6)Å³, Z = 4, Mr = 367.8, Dc = 1.793 Mg/cm³, μ = 1.639 mm⁻¹, F(000) = 748, T = 273(2)K, R = 0.0482, wR = 0.1225 for 3096 reflections with I > 2 σ (I).

Key Words: Cu(II) complex, π - π Stacking interactions, Crystal structure, Hydrogen bonds, Superamolecular.

INTRODUCTION

There has been increasing interest of Cu(II) and 1,10-phenanthroline complexes in the field of coordination chemistry^{1.4}. At the same time, oxalates have played a prominent role in the design and construction of molecular magnetic material due to their stability and ease of chemical modification⁵⁻¹⁰. In an effort to bring these two research areas together, recently, in our laboratory, a series of copper(II) compounds have been synthesized and studied¹¹⁻¹⁴. In this paper, we will report the synthesis and crystal structure of copper(II) complex [Cu(phen)(C₂O₄)(H₂O)]·H₂O.

EXPERIMENTAL

 $Cu(ClO_4)_2 \cdot 6H_2O$ was prepared in our laboratory, the other reagents were of AR grade and used without further purification. IR spectra were recorded on a Nexus-870 spectrophotometer. Elemental analysis for C, H and N were performed on an Elementar Vario EL-III analyzer.

[†]School of Chemistry and Chemical Engineering, Anhui University, Hefei-230039, P.R. China.

[‡]Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou-350002, P.R. China.

5230 Bi et al.

Asian J. Chem.

Synthesis: To a 20 mL methanol solution of Cu(ClO₄)₂·6H₂O (371 mg, 1 mmol) were successively added a 10 mL methanol solution of 1,10phenanthroline (198 mg, 1 mmol) and a 10 mL aqueous solution of Na₂C₂O₄ (111 mg, 1 mmol) with stirring. The mixture was refluxed for 3 h to obtain a clear blue solution, and after standing at room temperature for 3 weeks, well-shaped blue single crystals were obtained by slow evaporation. In the IR spectrum, maximal absorption wavelengths of 1,10-phenanthroline are 789, 723 cm⁻¹. The stretching vibrations of v(C=N) are 1640 cm⁻¹ and that of v(C=O) is 1690 cm⁻¹. Elemental analysis confirmed the organic content. Found (Calcd.) (%): C 45.75 (45.70), H 3.30 (3.29), N 7.60 (7.62) for [Cu(phen)(C₂O₄)(H₂O)]·H₂O.

Crystal structure determination: A single crystal of [Cu(phen)(C₂O₄) (H₂O)]·H₂O with dimensions of 0.95 mm × 0.65 mm × 0.60 mm was selected for crystallographic data collection at 293(2)K and structure determination on a Siemens SMART CCD area-detector diffractometer with graphite-monochromatic MoK α radiation ($\lambda = 0.71073$ Å). A total of 10016 reflections were collected in the range of 3.04° $\leq \theta \leq 27.48$ °, of which 3096 reflections were unique with R_{int} = 0.0248. Lp effects and empirical absorption were applied in data corrections. The structure was solved by direct methods and expanded using Fourier techniques and SHELXS-97 program system was used in the solution and refinement of the structure. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added according to theoretical model. The final full-matrix least-squares refinement including 220 variable parameters for 3096 reflections with I > 2 σ (I) and converged with unweighted and weighted agreement factors of

$$R_1 = \Sigma(||F_0| - |F_c||) / \Sigma|F_0| = 0.0224$$
(1)

 $wR_{2} = \{\Sigma[w(F_{0}^{2} - F_{C}^{2})^{2}] / \Sigma w(F_{0}^{2})^{2}\} = 0.0624$ (2)

where w = $1/[\sigma^2(F_0^2) +)0.0327P)^2 + 0.8457P]$ and P = $(F_0^2 + 2F_C^2)/3$. The maximum and minimum peaks on the final difference Fourier map are corresponding to 0.392 and -0.478e/Å³, respectively.

RESULTS AND DISCUSSION

The atomic coordinates and thermal parameters are listed in Table-1, and the selected bond lengths and bond angles in Table-2. Fig. 1 shows the molecular structure of the title compound. Fig. 2 shows the packing diagram of the title compound. From the Fig. 1, it is easy to conclude that the copper(II) ion is five-coordinated with two N atoms and three O atoms, which is very different from the normal copper(II) ion six-coordinated, because of the space encumbrance from the 1,10-phenanthroline molecule and the $C_2O_4^{2-}$ dianion.

TABLE-1	
NON-HYDROGEN ATOMIC COORDINATES (× 10 ⁴) AND THERMAI	L
PARAMETERS ($\times 10^3 \text{ Å}^2$)	

Atom	Х	Y	Z	U(EQ)
Cu	-93	207	346	10(1)
N(1)	1417(1)	-1212(1)	4086(1)	11(1)
N(2)	931(1)	1426(1)	4385(1)	11(1)
O(1)	-1857(1)	1439(1)	3027(1)	13(1)
O(2)	-1372(1)	-1131(1)	2721(1)	15(1)
O(3)	-4306(1)	1498(1)	2172(1)	18(1)
O(4)	-3664(1)	-1190(1)	1759(1)	20(1)
O(5)	1748(2)	919(1)	2685(1)	22(1)
O(6)	2857(1)	-747(1)	1735(1)	18(1)
C(1)	-3027(2)	931(2)	2502(1)	12(1)
C(2)	-2694(2)	-600(2)	2297(1)	13(1)
C(3)	1628(2)	-2528(2)	3908(1)	14(1)
C(4)	2801(2)	-3378(2)	4399(1)	16(1)
C(5)	3767(2)	-2853(2)	5088(1)	14(1)
C(6)	3577(2)	-1453(2)	5286(1)	12(1)
C(7)	4566(2)	-779(2)	5973(1)	14(1)
C(8)	4332(2)	578(2)	6112(1)	14(1)
C(9)	3074(2)	1380(2)	5603(1)	12(1)
C(10)	2750(2)	2787(2)	5728(1)	14(1)
C(11)	1544(2)	3461(2)	5184(1)	16(1)
C(12)	655(2)	2753(2)	4511(1)	15(1)
C(13)	2114(2)	748(2)	4923(1)	11(1)
C(14)	2373(2)	-683(2)	4762(1)	11(1)

 TABLE-2

 SELECTED BOND DISTANCES (Å) AND ANGLES (°)

Bond	Length	Angle	(°)	Angle	(°)
Cu-O(1)	1.9397(11)	O(1)-Cu-O(2)	85.28(5)	N(1)-C(3)-C(4)	121.87(14)
Cu-O(2)	1.9535(11)	O(1)-Cu-N(1)	166.92(5)	O(2)-C(2)-C(1)	114.95(12)
Cu-N(1)	2.0015(13)	O(2)-Cu-N(1)	94.86(5)	O(4)-C(2)-C(1)	119.49(13)
Cu-N(2)	2.0135(13)	O(1)-Cu-N(2)	94.54(5)	O(4)-C(2)-O(2)	125.56(14)
Cu-O(5)	2.2063(2)	O(2)-Cu-N(2)	167.39(5)	O(1)-C(1)-C(2)	114.41(12)
N(1)-C(3)	1.392(18)	N(1)-Cu-N(2)	82.47(5)	O(3)-C(1)-C(2)	120.10(13)
N(1)-C(14)	1.3563(8)	O(1)-Cu-O(5)	94.17(5)	O(3)-C(1)-O(1)	125.49(14)
N(2)-C(12)	1.328(2)	O(2)-Cu-O(5)	96.72(5)	C(2)-O(2)-Cu	112.37(10)
N(2)-C(13)	1.3590(18)	N(1)-Cu-O(5)	98.79(5)	C(1)-O(1)-Cu	112.78(9)
O(1)-C(1)	1.2915(17)	N(2)-Cu-O(5)	95.78(5)	C(13)-N(2)-Cu	111.93(10)
O(2)-C(2)	1.2831(18)	C(3)-N(1)C(14)	118.57(13)	N(2)-C(12)C(11)	121.78(14)
O(3)-C(1)	1.2180(18)	C(3)-N(1)-Cu	128.88(10)	N(2)-C(13)-C(9)	123.47(13)
O(4)-C(2)	1.2249(18)	C(14)-N(1)-Cu	112.49(10)	N(2)-C(13)-C(14)	116.57(12)

5232 Bi et al.

Asian J. Chem.

Fig. 1. Molecular structure of $[Cu(phen)(C_2O_4)(H_2O)]\cdot H_2O$

Fig. 2. Molecular packing arrangement in the unit cell

The two N atoms are from 1,10-phenanthroline molecule. The bond lengths are 2.0015(13)Å and 2.0135(13)Å. $O_{(1)}$ and $O_{(2)}$ come from a $C_2O_4^{2-1}$ group. The bond lengths are 1.9397(11)Å and 1.9535(11)Å. The apical position is occupied by one coordinated water oxygen atom $O_{(5)}$, which is slightly elongated from the Cu center (Cu–O₍₅₎ = 2.2063(12)Å) due to the Jahn-Teller effects of the copper(II) atom with a d^9 electron configuration. All of the atoms of a 1,10-phenanthroline molecule and a $C_2O_4^{2-}$ group are respectively coplanar. The dihedral angle between the 1,10-phenanthroline molecule plane and the $C_2O_4^{2-}$ group plane is 167.3°. The bond angels of O(1)-Cu-O(5), O(2)-Cu-O(5), N(1)-Cu-O(5), N(2)-Cu-O(5) are in the range from $94.17(5)^{\circ}$ to $98.79(5)^{\circ}$. The distances between $O_{(5)}$ and $O_{(1)}$, $O_{(5)}$ and $O_{(2)}$, $O_{(5)} \ and \ N_{(1)}, \ O_{(5)} \ and \ N_{(2)}, \ O_{(1)} \ and \ O_{(2)}, \ O_{(2)} \ and \ N_{(1)}, \ N_{(1)} \ and \ N_{(2)}, \ N_{(2)} \ and \ N_{(2)} \ and \ N_{(2)}, \ N_{(2)} \ and \ N_{(2)} \ and \ N_{(2)}, \ N_{(2)} \ and \ N_{(2)} \ and$ O₍₁₎, O₍₁₎ and N₍₁₎, O₍₂₎ and N₍₂₎ are 3.042, 3.113, 3.198, 3.136, 2.637, 2.913, 2.647, 2.904, 3.916 and 3.943Å. In addition, The angels of $N_{(2)}$ - $O_{(1)}$ - $O_{(2)}$, $O_{(1)}-O_{(2)}-N_{(1)}, O_{(2)}-N_{(1)}-N_{(2)}, N_{(1)}-N_{(2)}-O_{(1)}$ are respectively 90.59, 89.60, 90.22 and 89.60°. So it can be suggested that the atoms $O_{(1)}$, $O_{(2)}$, $N_{(1)}$, $N_{(2)}$ are all but in a plane and $O_{(1)} \cdots O_{(2)} \cdots N_{(1)} \cdots N_{(2)} \cdots O_{(1)}$ is nearly a rectangle. The Cu atom is displaced by ca. 0.2212 Å out of the rectangle plane. By the above analyses, it is concluded that the copper(II) ion is five-coordinated in a slightly distorted square pyramidal geometry, the axial position is occupied by O₍₅₎ atom.

Vol. 19, No. 7 (2007)

The hydrogen-bonded geometry involving coordinated and noncoordinated water molecules is characterized in Table-3 (Fig. 3). It can be seen that there are four kinds of hydrogen bonds in the crystal, through the anterior three kinds of ones: $O_{(5)}$ - $H_{(1)}$ ··· $O_{(6)}$, $O_{(5)}$ - $H_{(2)}$ ··· $O_{(2A)}$, $O_{(6)}$ - $H_{(4)}$ ··· $O_{(1C)}$, the title compound molecule form a chain-link structure, and many chains make up of a two-dimensional polymer layer by another kind of hydrogen bond: $O_{(6)}$ - $H_{(3)}$ ··· $O_{(4B)}$. In addition, between the layers the parallel phenanthroline ring lies alternately in a head-to-tail manner, forming a layer structure with the layer separation of about 3.506Å, implying the existence of some π - π stacking interactions between the phenanthroline rings¹⁵. Through the π - π stacking interactions, many of these layers pack in a 3-D net structure Supramolecular Complex and the shorest distance between the two layers is about 3.415 Å.

TABLE-3
HYDROGEN BOND DISTANCE (Å) AND ANGLES (°)

D-H…A	D-H	Н…А	D····A	∠DHA
O(5)-H(1)···O(6)	0.894(16)	1.845(16)	2.7392(17)	178.0(2)
O(5)-H(2)-O(2A)#1	0.864(16)	2.067(16)	2.9287(18)	169.0(2)
O(6)-H(4)-O(1C)#3	0.876(15)	1.977(16)	2.8486(17)	172.6(19)
O(6)-H(3)-O(4B)#2	0.875(15)	2.099(16)	2.9305(18)	158.0(2)

Symmetry transformations used to generate equivalent atoms: # 1-x,y+1/2,-z+1/2 #2 x+1,y,z #3 -x,y-1/2,-z+1/2

Fig. 3. View of the layered structure formed by hydrogen bonds and π - π stacking interactions with the hydrogen atoms omitted for clarity

Asian J. Chem.

5234 Bi et al.

Conclusion

Crystal structure of a novel 3D-superamolecular copper(II) complex with oxalate and 1,10-phenanthroline $[Cu(phen)(C_2O_4)(H_2O)]\cdot H_2O$ has been synthesized and characterized by IR, elemental analysis and X-ray diffraction analysis. The studies of the absorption and catalytic characteristics about this complex are in progress.

ACKNOWLEDGEMENT

This work is financially supported by the Foundation of 2006 Anhui province key research project (06022020).

REFERENCES

- 1. B. Moulton and M. Zaworotko, J. Chem. Rev., 107, 1629 (2001).
- 2. G.F. Swiegers and T. Malefetse, J. Chem. Rev., 100, 3483 (2000).
- 3. J.Y. Lu, M.A. Lawandy and Li, J. Inorg. Chem., 38, 2695 (1999).
- 4. Y. Yamamoto and S. Suzuki, J. Chem. Soc., Dalton Trans., 1566 (2001).
- 5. F.L. De Panththou, E. Belorizky, R. Calemczuk, D. Luneau, C. Marcenat, E. Ressouche, P. Turek and P. Rey, *J. Am. Chem. Soc.*, **117**, 11247 (1995).
- 6. Y. Yamamoto and S. Suzuki, J. Chem. Soc., Dalton Trans., 1566 (2001).
- 7. M.T. Pope and A. Muller, Angew. Chem. Int. Ed. Engl., 30, 34 (1991).
- 8. Y.H. Xing, J.Q. Xu, D.M. Li, R.Z. Wang, X.Y. Huang, W.M. Bu, L. Ye, G.D. Yang and Y.G. Fan, *Synth. React. Inorg. Met. Org. Chem.*, **29**, 687 (1999).
- 9. F.A. Cotton, S.M. Morehouse and J.S. Wood, Inorg. Chem., 3, 1603 (1964).
- 10. J. Fan, W.Y. Sun, T.A. Okamura, K.B. Yu and N. Ueyama, *Inorg. Chim. Acta*, **319**, 240 (2001).
- 11. J.H. Bi, J.M. Song, Z.X. Huang, Y.H. Wang and L.T. Kong, *Asian J. Chem.* **18**, 2365 (2006).
- 12. J.H. Bi, F.X. Xie, X.D. Zhao, Q. Chen, J.D. Xu and S.S. Ni, *Asian J. Chem.*, **16**, 137 (2004).
- J.H. Bi, L.Q. Chen, Z.Q. F.X. Xie, X.D. Zhao, S.S. Ni and J.D. Xu, Asian J. Chem., 14, 1621 (2002).
- 14. N.L. Hu, H.Z. Dong, Z.X. Huang and F.X. Xie, Asian J. Chem., 17, 1276 (2005).
- 15. M.L. Tong, H.K. Lee, X.M. Chen, R.B. Huang and T.C.W.M. Mak, J. Chem. Soc., Dalton Trans., 3657 (1999).

(Received: 8 September 2006; Accepted: 14 June 2007) AJC-5698