Asian Journal of Chemistry

Redetermination of Crystal Structure of *Bis*(2,4-pentanedionato)copper(II)

HAMID GOLCHOUBIAN

Department of Chemistry, Mazandaran University, P.O. Box 453, Babolsar, Iran Tel/Fax: (98)(112)5242002; E-mail: h.golchobian@umz.ac.ir

The crystal structure of *bis*(2.4-pentanedionato)copper(II) has been redetermined at the low-temperature. The results confirmed the reported data, but with significant improvement in precision.

Key Words: Crystal structure, Acetylacetonato ligand, Copper complex.

INTRODUCTION

The structure of *bis*(2,4-pentanedionato)copper(II) was redetermined as part of continued investigations on the synthesis and characterization of mixed-chelate complexes of copper(II)^{1,2}. One of the interests is to make mixed-chelate complex and then condense them to a macrocyclic complex. To determine the effect of mixed-chelate formation on the bond distances and angles and also to obtain more information about the effect of these bond lengths and angles on the condensation of mixed-chelate complex we persu-aded to have information concerning with the equivalent homo *bis*-chelate complexes. The structure of *bis*(2,4-pentanedionato)copper(II) have been previously investigated by three-dimentional X-ray diffraction³ and single crystal X-ray diffraction⁴ but these early surveys do not have enough precision for this purpose (R = 0.151 and 0.056, respectively). Thus, the crystal structure of *bis*(2,4-pentanedionato)copper(II) (I) at 100 K is reported.

Structure of *bis*(2,4-pentanedionato)copper(II) (I)

Vol. 20, No. 8 (2008)

Crystal Structure of Bis(2,4-pentanedionato)copper(II) 5835

EXPERIMENTAL

The complex $Cu(acac)_2$ was prepared by procedure given by Peacock⁵. A blue crystal with approximate dimensions of 0.55 mm × 0.18 mm × 0.04 mm was mounted on a glass fiber using epoxy cement such that the longest crystal dimension (b axis) was approximately parallel to the fiber axis.

Unit cell parameters and orientation matrix were determined on a Bruker SMART APEX II CCD diffractometer with graphic monochromated MoM_{α} radiation ($\lambda = 0.71073$ Å). The technique used was ω -scan with θ limits 2.63 $\leq \theta \leq$ 28.00 at temperature of 100 K. The crystallographic data is summarized in Table-1. Data were collected on an APEX2 diffractometer.

CRISIAL DAIA AND SIR		$\operatorname{Cu}(\operatorname{acac})_2$
Crystal data:		
Empirical formula	$C_{10}H_{14}O_4Cu$	
Formula weight	261.75	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 10.2714(9) Å	$\alpha = 90^{\circ}$
	b = 4.6283(4) Å	$\beta = 92.384(2)^{\circ}$
	c = 11.2908(11) Å	$\gamma = 90^{\circ}$
Volume	536.29(8) Å ³	•
Z	2	
Density (calculated)	1.621 Mg/m^3	
Absorption coefficient	2.026 mm ⁻¹	
F(000)	270	
Crystal size	$0.55 \times 0.18 \times 0.04$ mm	3
Data collection:		
θ -Range for data collection	2.63 to 28.00°.	
Index ranges	$-13 \le h \le 13, -6 \le k \le 6$	$5, -14 \le 1 \le 14$
Reflections collected	5065	
Independent reflections	1272 [R(int) = 0.0240]	
Observed reflections $[I > 2\sigma(I)]$	1131	
Completeness to theta = 28.00°	98.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9233 and 0.4020	-
Refinement:		
Refinement method	Full-matrix least-square	es on F ²
Data/restraints/parameters	1272/0/72	
Goodness-of-fit on F ²	1.075	
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0220, wR2 = 0.	0551
R indices (all data)	R1 = 0.0261, wR2 = 0.	0575
Largest diff, peak and hole	0.481 and -0.384 e.Å ⁻³	

TABLE-1 CRYSTAL DATA AND STRUCTURE REFINEMENT FOR Cu(acac)

5836 Golchoubian

Asian J. Chem.

Three standard reflections were checked every 200 reflections. Empirical absorption correction was carried out by using the Bruker APEX II program⁶. A total of 5065 reflections were measured, of which 1131 were uniques $[I > 2\sigma(I)]$. The structures were solved by direct methods and refined by full-matrix least-squares on F2 using the SHELXS-97 software package^{7.8}. All hydrogen atoms were treated in riding model with the U_{iso}(H) parameters equal to 1.2 U_{eq}(Ci) and 1.5 U_{eq}(Cii), where U_{eq}(Ci) and U_{eq}(Cii) are the equivalent thermal parameters of, respectively, methylene and methyl groups to which corresponding H-atoms are bonded.

The O-bound H atoms were located in a difference map and refined as riding in their as-found relative positions, with $U_{iso}(H) = 1.5U_{eq}(O)$. The C-bound H atoms were placed in idealized locations (C-H = 0.98 Å) and refined as riding, with $U_{iso}(H) = 1.5U_{eq}C$.

The final conventional R = 0.0220 and wR = 0.0551 for I > $2\sigma(I)$ with weighing scheme, w = $1/[\sigma^2(Fo^2) + (0.0264P)^2 + 0.3586P]$ where P = $(Fo^2 + 2Fc^2)/3$. The molecular graphic were plotted using Bruker SHELXTL⁹ Atomic scattering factors and anomalous dispersion correction were taken from international tables for X-ray crystallography¹⁰.

RESULTS AND DISCUSSION

The fractional atomic coordinates of complex is given in Table-2. ORTEP drawing for bis(2,4-pentanedionato)copper(II) (I) is presented in Fig. 1.

Fig. 1. ORTEP drawing of I at the 50 % probability level

Vol. 20, No. 8 (2008)

Crystal Structure of Bis(2,4-pentanedionato)copper(II) 5837

DISPLACEMENT PARAMETERS (A × 10) FOR COMPOUND I					
Atom	Х	У	Z	U(eq)*	
Cu(1)	5000	0	0	12(1)	
O(1)	3376(1)	2066(2)	-58(1)	15(1)	
O(2)	5654(1)	2022(2)	-1340(1)	15(1)	
C(1)	3097(1)	4197(3)	-727(1)	13(1)	
C(2)	3890(2)	5311(3)	-1601(1)	15(1)	
C(3)	5111(2)	4152(4)	-1864(1)	14(1)	
C(4)	1812(2)	5653(4)	-528(2)	17(1)	
C(5)	5858(2)	5525(4)	-2837(2)	19(1)	

TABLE-2 ATOMIC COORDINATES (× 104) AND EQUIVALENT ISOTROPIC DISDLA CEMENIT DA DA METEDS $(^{3}_{2} \times 10^{3})$ EOD COMPOLINID I

*U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

The copper atom lies on a center of inversion and adopts a square planar geometry. The selected bond lengths and angles are given in Table-3. The two bite distances for Cu-O are 1.9214(11) and 1.9234(116) Å. These distances are longer than to those observed by Lebrun et al.⁴ and Lingafelter et al.¹¹ for 13 three-dimensionally determined acetylacetonato complexes. The O-Cu-O bite angle is 93.58(5)° and slightly wider that those reported before. The chemically unique acetylacetonato ligand mean bond lengths C-O, C-H and C-CH₃ are 1.268(2) Å, 1.404(2) Å and 1.507(2) Å and do not differ significantly from those reported by Lebrun et al.⁴. The dihedral angle between two CuO_2 are $180(3)^\circ$ and $180(9)^\circ$. The torsion angle of Cu-O1-C1-C2, O1-C1-C2-C3 and Cu-O1-C1-C4 are 4.4(2)°, 1.1(3)° and -170.09(10)°, respectively. Molecules stack in a face-to-face mode to form a molecular column along the b axis (Fig. 2) and there is no interaction between molecules.

TABLE-3

SELECTED BOND LENGTHS (A) AND ANGLES (*) FOR COMPOUND I*						
Cu(1)-O(1)#1	1.9214(11)	O(2)-C(3)	1.268(2)			
Cu(1)-O(1)	1.9214(11)	C(2)-C(3)	1.407(2)			
Cu(1)-O(2)	1.9234(11)	C(1)-C(2)	1.404(2)			
Cu(1)-O(2)#1	1.9234(11)	C(1)-C(4)	1.507(2)			
O(1)-C(1)	1.268(2)	C(3)-C(5)	1.507(2)			
O(1)#1-Cu(1)-O(1)	180.00(3)	C(3)-O(2)-Cu(1)	125.74(10)			
O(1)#1-Cu(1)-O(2)	86.42(5)	O(1)-C(1)-C(2)	125.51(14)			
O(1)-Cu(1)-O(2)	93.58(5)	O(1)-C(1)-C(4)	115.89(13)			
O(1)#1-Cu(1)-O(2)#1	93.58(5)	C(2)-C(1)-C(4)	118.58(15)			
O(1)-Cu(1)-O(2)#1	86.42(5)	C(1)-C(2)-C(3)	123.84(15)			
O(2)-Cu(1)-O(2)#1	180.00(9)	O(2)-C(3)-C(2)	125.25(14)			
C(1)-O(1)-Cu(1)	125.60(10)	O(2)-C(3)-C(5)	116.14(14)			

*Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y, -z

5838 Golchoubian

Asian J. Chem.

Fig. 2. Fragment of crystal packing of compound I (projection along b crystal axis)

ACKNOWLEDGEMENT

The authors are grateful for the financial support of Mazandaran University of the Islamic Republic of Iran.

REFERENCES

- 1. H. Asadi, H. Golchoubian and R. Welter, J. Mol. Struct., 779, 30 (2005).
- 2. E. Movahedi and H. Golchoubian, J. Mol. Struct., 787, 167 (2006).
- 3. Z.A. Starikova and E.A. Shugam, Zh. Strukt. Khim., 10, 290 (1969).

- P.C. Lebrun, W.D. Lyon and H.A. Kuska, *J. Cryst. Spectro. Res.*, 16, 889 (1986),
 R.D. Peacock, *J. Chem. Educ.*, 48, 133 (1971).
 Bruker, APEX2 softwarwe package, Bruker AXS Inc., 5465, East Cheryl Parkway, Madison, WI 5317 (2005).
- 7. G.M. Sheldrick, Acta Cryst., A46, 467 (1990).
- 8. G.M. Sheldrick, SHELXL97. University of Gottingen, Germany (1997).
- G.M. Sheldrick, SHELXTL Version 5.10, Structure Determination Software Suite, 9. Bruker AXS, Madison, Wisconsin, USA (1998).
- 10. A.J.C. Wilson, International Table for X-Ray Crystallography, Volume C, Kluwer Academic Publishers, Dordrecht, Tables 6.1.1.4 (pp. 500-502) and 4.2.6.8 (pp. 219-222), respectively (1992).
- 11. E.C. Lingafelter and R.L. Braun, J. Am. Chem. Soc., 88, 2951 (1966).

(Received: 9 July 2007; Accepted: 16 June 2008) AJC-6616