Asian Journal of Chemistry

Molecular Structure Studies on Seven-Memebered Heterocyclic C₆H₆M (M = O, S, Se, Te, NH, PH, AsH, SbH, CH₂, SiH₂, GeH₂, SnH₂ and PbH₂): DFT Calculations

E. VESSALLY

Department of Chemistry, Payame Noor University, Zanjan, Iran E-mail: e_vesali@yahoo.com

Molecular structure optimization are carried out on sevenmemebered heterocyclic C_6H_6M , including: oxepine C_6H_6O , thiepine C_6H_6S , selenepine C_6H_6Se , tellurepine C_6H_6Te , azepine C_6H_6NH , phosphepine C_6H_6PH , arsepine C_6H_6AsH , stibepine C_6H_6SbH , cyclohepta-1,3,5-triene $C_6H_6CH_2$, silepine $C_6H_6SiH_2$, germepine $C_6H_6GeH_2$, stannepine $C_6H_6SnH_2$ and plumbepine $C_6H_6PbH_2$ at B3LYP/6-311++G** level of theory.

Key Words: Molecular structure, Seven-memebered, Heterocyclic, DFT calculations.

INTRODUCTION

Saturated and unsaturated seven-membered rings have been extensively studied¹⁻⁸. The chair and twist-chair conformations of seven-membered rings have been classified as a function of the signs of their endocyclic torsion angles through MM3 analysis¹. The conformational consequences of the anomeric effect have been determined for 3-methoxy-1,3,4,5-tetrahydro-2-benzoxepin by using ¹H and ¹³C dynamic NMR techniques, two-dimensional COSY spectra at low temperatures^{3,4}.

Geometrical and structural requirements for the ring planarization of cyclopolyolefins have been discussed⁵. The isomerizations of cycloheptatriene to norcaradiene, cyanocycloheptatrienes to cyanonorcaradienes, oxepin to benzene oxide and borepin to boranorcaradiene have been studied through *ab initio* molecular orbital theory⁶.

In this work, the molecular structure studies carried out on sevenmemebered heterocyclic C_6H_6M (M = O, S, Se, Te, NH, PH, AsH, SbH, CH₂, SiH₂, GeH₂, SnH₂ and PbH₂) through DFT calculations at B3LYP/6-311++G** level of theory (**Scheme-I**). 5968 Vessally

Scheme-I: Seven-membered ring of C_6H_6M (M = O, S, Se, Te, NH, PH, AsH, SbH, CH₂, SiH₂, GeH₂, SnH₂ and PbH₂)

COMPUTATIONAL METHODS

Full geometry optimizations are carried out for C_6H_6M (M = O, S, Se, Te, NH, PH, AsH, SbH, CH₂, SiH₂, GeH₂, SnH₂ and PbH₂) through DFT method using 6-311++ G^{**} basis set (Scheme-I)^{9,10}. The all of calculations are done with Gaussian 98 program¹¹. For DFT calculations the Becke's hybrid three-parameters functional combined with the Lee-Yang-Parr nonlocal correlation functional (B3LYP) are used. The calculations are carried out by LANL2DZ basis set¹² for Te, Sb, Sn and Pb atoms, accompanying the 6-311++G** basis set for other atoms via 'Extrabasis' keyword. To confirm the nature of the stationary species, frequency calculations are carried out. Thermodynamic functions obtained through frequency calculations, are multiplied by the suitable scaling factor and correction terms.

RESULTS AND DISCUSSION

In this work, full molecular structure optimizations are carried out on seven-memebered heterocyclic (C₆H₆M) including: oxepine C₆H₆O, thiepine C₆H₆S, selenepine C₆H₆Se, tellurepine C₆H₆Te, azepine C₆H₆NH, phosphepine C₆H₆PH, arsepine C₆H₆AsH, stibepine C₆H₆SbH, cyclohepta-1,3,5-triene C₆H₆CH₂, silepine C₆H₆SiH₂, germepine C₆H₆GeH₂, stannepine C₆H₆SnH₂ and plumbepine $C_6H_6PbH_2$ at B3LYP/6-311++G** level of theory (Schemes-I and II).

DFT calculations indicate that the compounds C₆H₆O, C₆H₆S, C₆H₆Se and C₆H₆Te have boat conformation (Scheme-II). The protonated C₆H₆O $(C_6H_6OH^+)$ and C_6H_6Te ($C_6H_6TeH^+$) have a boat conformation with *endo* position of proton, while C₆H₆SH⁺ have boat conformation with *exo* position of proton. Protonated C₆H₆SeH⁺ has boat conformation with two quasi double bonds (C_3 - C_4 and C_5 - C_6). It is seemed that the protonated $C_6H_6SeH^+$ construct a homoaromatic system.

C₆H₆NH and C₆H₆AsH have boat conformation with *exo* position of proton (Scheme-II). C₆H₆PH and C₆H₆SbH have boat conformation with endo position of proton. The C₆H₆N⁺ and C₆H₆P⁺ construct a planar conformation with aromatic character. C₆H₆As⁺ and C₆H₆Sb⁺ have a planar conformation with homoaromatic character. Surprisingly, the $C_6H_6N^-$ has a planar conformation but the DFT calculations indicated a negative imagine frequency. Vol. 20, No. 8 (2008) Molecular Structure Studies on Seven-Memebered Heterocyclic 5969

Scheme-II: Full optimized conformations for seven-memebered ring of C_6H_6M (M = O, S, Se, Te, NH, PH, AsH, SbH, CH₂, SiH₂, GeH₂, SnH₂ and PbH₂)

 $C_6H_6P^-$ and $C_6H_6As^-$ have a planar conformation but don't show any aromatic character. Protonated $C_6H_6NH_2^+$, $C_6H_6PH_2^+$, $C_6H_6AsH_2^+$ and $C_6H_6SbH_2^+$ have boat conformations while $C_6H_6NH_2^+$ construct quasi double bonds (C_3-C_4 and C_5-C_6) with homoaromatic character.

The compounds, $C_6H_6CH_2$, $C_6H_6SiH_2$, $C_6H_6GeH_2$, $C_6H_6SnH_2$ and $C_6H_6PbH_2$ form boat conformations (**Scheme-II**). However, $C_6H_6CH_2$ construct quasi double bonds (C_3-C_4 and C_5-C_6) with homoaromatic character. $C_6H_6CH^+$ and $C_6H_6CH^-$ have planar structure while $C_6H_6CH^+$ form an aromatic system. $C_6H_6SiH^+$ have planar structure with aromatic character and $C_6H_6GeH^+$, $C_6H_6SnH^+$ and $C_6H_6PbH^+$ have planar structure with homoaromatic character. $C_6H_6SiH^-$ and $C_6H_6GeH^-$ have boat conformation with *exo* position of proton 5970 Vessally

while $C_6H_6SnH^-$ and $C_6H_6PbH^-$ have boat conformation with *endo* position of proton. The DFT calculations indicated a negative imagine frequency for $C_6H_6CH^-$, $C_6H_6N^-$, $C_6H_6P^-$ and $C_6H_6As^-$.

Conclusion

Molecular structure optimizations are carried out on seven-memebered heterocyclic C₆H₆M through DFT calculations at B3LYP/6-311++G** level of theory. DFT calculations indicate that the compounds C₆H₆O, C₆H₆S, C₆H₆Se, C₆H₆Te, C₆H₆NH, C₆H₆AsH, C₆H₆PH, C₆H₆SbH, C₆H₆CH₂, C₆H₆SiH₂, C₆H₆GeH₂, C₆H₆SnH₂ and C₆H₆PbH₂ have boat conformations. C₆H₆CH₂ show a homoaromatic character among of these compounds. Generally, the carbocationic state of these compounds show aromatic and/ or homoaromatic character.

REFERENCES

- A. Entrena, J. Campos, J.A. Gómez, M.A. Gallo and A. Espinosa, *J. Org. Chem.*, **62**, 337 (1997).
- K.R. Gibson, L. Hitzel, R.J. Mortishire-Smith, U. Gerhard, R.A. Jelley, A.J. Reeve, M. Rowley, A. Nadin and A.P. Owens, *J. Org. Chem.*, 67, 9354 (2002).
- 3. S. Desilets and M. St-Jacques, J. Am. Chem. Soc., 109, 1641 (1987).
- 4. D. MCard and M. St-Jacques, J. Am. Chem. Soc., 106, 2055 (1984).
- 5. O. Ermer, F.G. Klarner and M. Wette, J. Am. Chem. Soc., **108**, 4908 (1986).
- 6. J.M. Schulman, R.L. Disch and M.L. Sabio, J. Am. Chem. Soc., 106, 7696 (1984).
- 7. C.L. Anderson, W.J. Horton, F.E. Walker and M.R. Weiler, *J. Am. Chem. Soc.*, **77**, 598 (1955).
- 8. N.L. Allinger and N.A. Pamphilis, J. Org. Chem., 58, 316 (1973).
- 9. C. Lee, W. Yang and R.G. Parr, *Phys. Rev. B*, **37**, 785 (1988).
- 10. A.D. Becke, J. Chem. Phys., 98, 5648 (1993).
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Znkrzewski, G.A. Montgomery, R.E. Startmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pamelli, G. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokoma, D.K. Malick, A.D. Rubuck, K. Raghavachari, J.B. Foresman, J. Cioslawski, J.V. Oritz, B.B. Stlefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Comperts, R.L. Martin, P.J. Fox, T. Keith, M.A. Al-laham, C.Y. Peng, A.N. Akkara, C.G. Gonzales, M.C. Combe, P.M.W. Gill, B. Johnson, W. Chem, M.W. Wong, J.L. Andres, C. Gonzales, M. Head-Gordon, E.S. Replogle and J.A. Pople, GAUSSIAN 98, Revision A. 6, Gaussian Inc., Pittsburgh PA (1998).
- 12. H.B. Schlegel and M.J. Frisch, Int. J. Quantum Chem., 54, 83 (1995).