Asian Journal of Chemistry

Conformational Studies on Divalent Five-Membered Ring C₄H₄M (M = C, Si, Ge, Sn and Pb)

E. VESSALLY*, A. AZIMI, M. NIKOORAZM[†] and H. GOUDARZI AFSHAR[†] Department of Chemistry, Islamic Azad University Miyaneh Branch, Miyaneh, Iran E-mail: e_vesali@yahoo.com

Sum of electronic and thermal energy differences between singlet and triplet states, $\Delta E_{t,s}$; enthalpy differences, $\Delta H_{t,s}$; free energy differences, $\Delta G_{t,s}$, are calculated for C_5H_4 , C_4H_4Si , C_4H_4Ge , C_4H_4Sn and C_4H_4Pb at B3LYP/6-311++G (3df,2p) level of theory. Triplet state of carbene, C_5H_4 , appears planar and ground state while its corresponding singlet state is nonplanar. In contrast, its analogues, C_4H_4M (M = Si, Ge, Sn and Pb) in both singlet and triplet states have planar structures with the ground state singlet. The order of energy differences between singlet and triplet, $\Delta G_{t,s}$, is: plumbylenes > stanylenes > germylenes > silylenes > carbene.

Key Words: Carbene, Silylene, Germylene, Stanylene, Plumbylene, Aromaticity.

INTRODUCTION

Divalent carbenes and their analogues are strongly reactive¹. The cyclic completely conjugated species are important in the chemistry of divalent carbene intermediates². These divalent structures were formerly described in terms of the Hückel (4n + 2) rule³. However, non-planar isomers are found energy minima for most of these singlet cyclic conjugated carbenes through semi-empirical studies⁴. The isolation of the stable five membered cyclic conjugated carbene is firstly reported by Arduengo⁵. Later, the stable five membered cyclic singlet silylenes and germylenes were investigated⁶⁻¹². Then, considerable development is made in the chemistry of divalent stanylenes^{13,14}. Finally, the isolation of the plumbylenes and their derivatives are reported¹⁵⁻¹⁹. In this manuscript, the conformational structures on singlet and triplet states of C₄H₄M (M = C, Si, Ge, Sn and Pb) is discussed.

EXPERIMENTAL

Full geometry optimizations of C_4H_4M (M = Si, Ge, Sn and Pb) are carried out by DFT method using 6-311++G(3df,2p) basis set of the

[†]Department of Chemistry, University of Ilam, Ilam, Iran.

5884 Vessally et al.

Asian J. Chem.

GAUSSIAN 98 system of programs²⁰⁻²² (**Scheme-I**). To find a global minimum on a specific surface, the all possible conformations of the given species are examined through scanning the specific dihedral angles at B3LYP/ 6-311++G(3df, 2p) level. This is for obtaining more accurate values of thermal energies (E) enthalpies (H) and Gibbs free energies (G). For stanylenes and plumbylenes, calculations are done using LANL2DZ basis set²³.

Scheme-I: Homologues divalent species of C_4H_4M (M = C, Si, Ge, Sn and Pb)

RESULTS AND DISCUSSION

The energies (E), enthalpies (H) and free energies (G) is calculated for the group 14 divalent five member cyclic conjugated structures: C_5H_4 , C_4H_4Si , C_4H_4Ge , C_4H_4Sn and C_4H_4Pb at B3LYP/6-311++G (3df,2p) level of theory (Table-1). Sum of electronic and thermal energy differences between singlet and triplet states, ΔE_{t-s} ; sum of electronic and thermal enthalpy differences between singlet and triplet states, ΔH_{t-s} ; sum of electronic and thermal free energy differences between singlet and triplet states, ΔG_{t-s} , are calculated at B3LYP/6-311++G (3df,2p) (Table-2). Geometrical parameters including bond lengths (R), bond angle (A) and dihedral angle (D) are calculated at B3LYP/6-311++G (3df,2p) level (Table-3).

TABLE-1
SUM OF ELECTRONIC AND THERMAL ENERGY (E); SUM
OF ELECTRONIC AND THERMAL ENTHALPY (H); SUM OF
ELECTRONICAND THERMAL FREE ENERGY (G) AT B3LYP/6-311++G
(3df,2p) FOR SINGLET (s) AND TRIPLET (t) STATES OF C ₄ H ₄ M
(M = C, Si, Ge, Sn AND Pb)

	,		
Compound	E	Н	G
$M = C_{(s)}$	-120903.597	-120903.004	-120922.939
$M = Si_{(s)}$	-278709.981	-278709.389	-278729.872
$M = Ge_{(s)}$	-1400374.331	-1400373.739	-1400396.049
$M = Sn_{(s)}$	-99173.673	-99173.081	-99195.803
$M = Pb_{(s)}$	-99233.427	-99232.834	-99256.134
$M = C_{(t)}$	-120912.846	-120912.253	-120932.537
$M = Si_{(t)}$	-278694.397	-278693.805	-278715.021
$M = Ge_{(t)}$	-1400351.716	-1400351.123	-1400373.264
$M = Sn_{(t)}$	-99147.353	-99146.760	-99169.598
$M = Pb_{(t)}$	-99205.360	-99204.768	-99228.831

Vol. 20, No. 8 (2008) Conformational Studies on Divalent Five-Membered Ring 5885

TABLE-2

SUM OF ELECTRONIC AND THERMAL ENERGYDIFFERENCES BETWEEN SINGLET (s) AND TRIPLET (t) STATES ΔE_{s-t} ; ELECTRONIC AND THERMAL ENTHALPYDIFFERENCES ΔH_{s-t} ; ELECTRONIC AND THERMAL FREEENERGY DIFFERENCES ΔG_{s-t} , at B3LYP/6-311++G(3df,2p) FOR C₄H₄M (M = C, Si, Ge, Sn AND Pb)

Compound	ΔE_{s-t}	ΔH_{s-t}	ΔG_{s-t}
M = C	9.249	9.249	9.598
M = Si	-15.584	-15.584	-14.851
M = Ge	-22.616	-22.616	-22.786
M = Sn	-26.319	-26.320	-26.205
M = Pb	-28.067	-28.067	-27.304

BOND LENGTHS (Å), BOND ANGLE (°) AND DIHEDRAL ANGLE (°) AT B3LYP/6-311++G (3df,2p) FOR C_4H_4M (M = C, Si, Ge, Sn AND Pb)

Compound	R _{1,2}	R _{2,3}	R _{3,4}	A _{2,1,3}	D _{2,1,3,4}
$M = C_{(s)}$	1.410	1.401	1.470	116.798	-30.213
$M = Si_{(s)}$	1.853	1.349	1.499	92.319	0.000
$M = Ge_{(s)}$	2.026	1.341	1.498	84.363	0.000
$M = Sn_{(s)}$	2.202	1.343	1.495	79.905	0.000
$M = Pb_{(s)}$	2.266	1.344	1.492	78.363	0.000
$M = C_{(t)}$	1.426	1.373	1.482	112.912	0.000
$M = Si_{(t)}$	1.838	1.367	1.465	96.340	0.000
$M = Ge_{(t)}$	1.938	1.358	1.468	92.455	0.000
$M = Sn_{(t)}$	2.187	1.433	1.386	77.025	0.000
$M = Pb_{(t)}$	2.254	1.432	1.386	75.538	-0.043

Triplet state of carbene (C_5H_4) appears planar and ground state while its corresponding singlet state is non-planar (**Scheme-II** and Tables 1-3). In contrast, its analogues, C_4H_4M , (M = Si, Ge, Sn and Pb) in both singlet and triplet states have planar structures with the ground state singlet.

This issue that carbene, C_5H_4 , is ground state triplet while silylene, germylene, stanylene and plumbylene are ground state singlets is well explained by evaluation of HOMO-LUMO energies^{24,25}. Δ (LUMO-HOMO) for divalent compounds, C_4H_4M (M = C, Si, Ge, Sn and Pb) is increased from M = C to M = Pb; showing stablization of singlet respect to triplet state.

5886 Vessally et al.

Asian J. Chem.

Scheme-II: Optimized structures for singlet (s) and triplet (t) states of C_4H_4M (M = C, Si, Ge, Sn and Pb)

Heavier atoms prefer to have non-bonding electrons in atomic orbitals with a higher percentage of s-character. The higher s-character in the $2a_1$ orbital of C₄H₄M (M = Si, Ge, Sn and Pb) relative to C₅H₄ suggests a relatively lower energy of this orbital and a higher HOMO-LUMO gap in C₄H₄M.

One of the factors to rising of ΔG_{s-t} , is the electron-electron repulsion between the lone pair electrons for the singlet state. The larger size of heavier divalent atoms diminishes the electron-electron repulsion of lone pair electrons; favouring the singlet state for C₄H₄M (M = Si, Ge, Sn and Pb) respect to C₄H₄C²⁶.

The order of energy differences between singlet and the corresponding triplet, ΔG_{t-s} , is: plumbylenes > stanylenes > germylenes > silylenes > carbene. This singlet-triplet splitting, ΔG_{t-s} , order is simillar to the simple analogoues²⁷ :CH₂, :SiH₂, :GeH₂, :SnH₂ and :PbH₂.

In order to confirm global minima, energy surface studies are necessary, since puckering of cyclopenta-2,4-dienylidene rings may alter positions of the global minima. Puckering progression are presented for M-cyclopenta-2,4-dienylidene ring as a function of dihedral angle $D_{2,1,5,4}$ (M = C, Si, Ge, Sn and Pb) (**Scheme-III**). The puckering energy appears higher for triplet states than their corresponding singlet states. The order of puckering energy barriers for both singlet and triplet states is: carbenes > silylenes > germy-lenes > stanylenes > plumbylenes. Nevertheless, the puckering energy barriers are higher for triplet states.

Vol. 20, No. 8 (2008)

Scheme-III: Puckering progression for C_4H_4M (M = C, Si, Ge, Sn and Pb) as a function of dihedral angle $D_{2,1,5,4}$

Conclusion

Triplet state of carbene (C_5H_4) appears planar and ground state while its corresponding singlet state is non-planar. In contrast, its analogues, C_4H_4M , (M = Si, Ge, Sn and Pb) in both singlet and triplet states have planar structures with the ground state singlet. The order of singlet-triplet splitting (ΔG_{t-s}) is: plumbylenes > stanylenes > germylenes > silylenes > carbene.

REFERENCES

- 1. P.P. Gaspar and R. West, in eds.: Z. Rappoport and Y. Apeloig, Chemistry of Organic Silicon Compounds, Wiley, Chichester, Vol. 2, p. 2436 (1997).
- (a) M.Z. Kassaee, S. Arshadi, M. Acedy and E. Vessally, J. Organomet. Chem., 690, 3427 (2005); (b) E. Vessally, N. Chalyavi, A. Rezaei and M. Nikoorazm, Russ. J. Phys. Chem., 81, 1821 (2007); (c) E. Vessally, A. Rezaei N., Chalyavi and M. Nikoorazm, J. Chin. Chem. Soc., 54, 1583 (2007); (d) E. Vessally, M. Nikoorazm, A. Rezaei and N. Chalyavi, Asian J. Chem., 19, 5000 (2007); (e) E. Vessally, Heteroatom Chem., 19, 245 (2008); (f) A.R. Rod and E. Vessally, Asian J. Chem., 19, 1709 (2007); (g) E. Vessally, M. Nikoorazm and A. Ramazani, Chin. J. Inorg. Chem., 24, 631 (2008); (h) E. Vessally, M. Nikoorazm, H.G. Afashar and T. Mohsenpour, Asian J. Chem., 20, 1121 (2008).
- (a) R. Gleiter and R. Hoffmann, J. Am. Chem. Soc., 90, 5457 (1968); (b) H. Kollmar, J. Am. Chem. Soc., 100, 2660 (1978); (c) L. Radom, H.F. Schaefer III and M.A. Vincent, Nouv. J. Chim., 4, 411 (1980).
- 4. M.Z. Kassaee, M.R. Nimlos, K.E. Downie and E.E. Waali, Tetrahedron, 41, 1579 (1985).
- 5. M. Su and S. Chu, *Inorg. Chem.*, **38**, 4819 (1999).
- 6. T.A. Schmedake, M. Haaf, Y. Apeloig, T. Müller, S. Bukalov and R. West, *J. Am. Chem. Soc.*, **121**, 9479 (1999).
- 7. S.B. Choi and P. Bondjouk, Tetrahedron Lett., 41, 6685 (2000).
- (a) L.A. Leites, S.S. Bukalov, A.V. Zabula, I.A. Garbuzova, D.F. Moser and R. West, J. Am. Chem. Soc., 126, 4114 (2004); (b) G.H. Lee, R. West and T. Müller, J. Am. Chem. Soc., 125, 8114 (2003); (c) M. Haaf, T.A. Schmedake and R. West, Acc. Chem. Res., 33, 704 (2000).
- 9. M.W. Heaven, G.F. Metha and M.A. Buntine, J. Phys. Chem. A, 105, 1185 (2001).
- 10. M.R. Zachariah and W. Tsang, J. Phys. Chem., 99, 5308 (1995).
- 11. M.S. Gordon and L.A. Pederson, J. Phys. Chem., 94, 5527 (1990).
- P.P. Gaspar, in eds.: M. Jones and R.A. Moss, Reactive Intermediates, Wiley-Interscience, New York, Vol. 1, p. 229 (1978).
- 13. N. Tokitoh and R. Okazaki, Coord. Chem. Rev., 210, 251 (2000).

5888 Vessally et al.

Asian J. Chem.

- 14. M.P. Egorov, O.M. Nefedov, T.-S. Lin and P.P. Gaspar, *Organometallics*, 14, 1539 (1995).
- 15. P.J. Davidson and M.F. Lappert, J. Chem. Soc. Chem. Commun., 317 (1973).
- 16. N. Kano, K. Shibata, N. Tokitoh and R. Okazaki, Organometallics, 18, 2999 (1999).
- 17. P.G. Harrison, Comprehensive Organometallic Chemistry-II, Pergamon, New York Vol. 2, p. 305 (1995).
- 18. N. Tokitoh, M. Saito and R. Okazaki, J. Am. Chem. Soc., 115, 2065 (1993).
- 19. H. Dfirr and F. Werndorff, Angew. Chem., Int. Ed., 13, 483 (1974).
- 20. C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988).
- 21. A.D. Becke, J. Chem. Phys., 98, 5648 (1993).
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Znkrzewski, G.A. Montgomery, R.E. Startmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pamelli, G. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokoma, D.K. Malick, A.D. Rubuck, K. Raghavachari, J.B. Foresman, J. Cioslawski, J.V. Oritz, B.B. Stlefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Comperts, R.L. Martin, P.J. Fox, T. Keith, M.A. Al-laham, C.Y. Peng, A.N. Akkara, C.G. Gonzales, M.C. Combe, P.M.W. Gill, B. Johnson, W. Chem, M.W. Wong, J.L. Andres, C. Gonzales, M. Head-Gordon, E.S. Replogle and J.A. Pople, GAUSSIAN 98, Revision A. 6, Gaussian Inc., Pittsburgh PA (1998).
- 23. H.B. Schlegel and M.J. Frisch, Int. J. Quantum Chem., 54, 83 (1995).
- 24. Y. Apeloig, R. Pauncz, M. Karni, R. West, W. Steiner and D. Chapman, *Organometallics*, **22**, 3250 (2003).
- 25. P.P. Gaspar, M. Xiao, D.H. Pae, D.J. Berger, T. Haile, T. Chen, D. Lei, W.R. Winchester and P. Jiang, J. Organomet. Chem., 646, 68 (2002).
- 26. C. Gonzalez, A. Restrepo-Cossio, M. Márquez, K.B. Wiberg and M.D. Rosa, J. Phys. Chem. A, 102, 2732 (1998).
- 27. K. Balasubramanian, J. Chem. Phys., 89, 5731 (1988).

(Received: 16 August 2007; Accepted: 20 June 2008) AJC-6624