NOTE

Synthesis and Structure of a 2D-Supramolecular Compound: [Cu(Phen)₂Cl]·Cl·3.5H₂O

Jian-Hong Bi*†, Xiang-Chun Meng, Zi-Xiang Huang‡ and Nai-Liang Hu Department of Chemistry, Hefei Teachers College, 327, Jinzhai Street Hefei-230061, Anhui, P.R. China E-mail: hxx010101@126.com

A new 2D-supramolecular compound of formula $[Cu(Phen)_2Cl]\cdot Cl\cdot 3.5H_2O$ (phen = 1,10-phenanthroline) has been synthesized and determined by X-ray diffraction. The crystal is monoclinic, space group C2/c with unit cell parameters: a = 23.354(2)Å, b = 30.289(3)Å, c = 7.4973(6)Å. $\alpha=90^{\circ},\beta=97.744(4)^{\circ},\gamma=90^{\circ},v=5255.1(8)Å^3,z=8,Dc=1.441~Mg/m^3,Mr=569.90,F(000)=2336$ and $\mu=1.072~mm^{-1}$. The final R and wR are 0.0734 and 0.2139, respectively for 5997 observed reflections with I>2 σ (I). The center copper(II) ion is five-coordinated in a square pyramidal geometry. The compound is in 2D-supramolecular state.

Key Words: Copper(II), 1,10-Phenanthroline, Supramolecular, Crystal structure.

Recently, the metal-organic framework materials (MOFs) has many advantages and a wide range of uses, the synthesis of MOFs is being more and more attention^{1,2}. Many MOFs supramolecular compounds containing copper(II) have been synthesized, because Cu ion is soft acid and it favour to be coordinated by soft base such as unsaturated N-containing ligands³⁻⁶. In this communication, the preparation and crystal structure of a novel 2D-supramolecular compound [Cu(Phen)₂Cl]·Cl·3.5H₂O are reported.

All reagents were of AR grade and used without further purification. IR spectra was record on a Nexus-870 spectrophotometer. Elemental analyses for C, H and N were performed on a Elementar Vario EL-III analyzer. The crystal structure was determined by Siemens SMART CCD area-detector diffractometer.

Synthesis: A mixture of $CuSO_4$ (0.3 mmol), 1,10-phenanthrolline (0.6 mmol), potassium hydrogenphthalate (0.3 mmol) and H_2O (25 mL) was carried out in a lautoclave, then heated to 150 °C for 48 h. The product was

[†]Department of Chemistry, Hefei Teachers College 230061, P.R. China.

[‡]Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P.R. China.

6616 Bi et al. Asian J. Chem.

bright green slender four-prism crystal. IR (KBr, ν_{max} , cm⁻¹): 3500-3200 [s, ν (O-H)], 1560, 1400 [s, ν (C=C, C=N)], 849, 725 [m, ν (phen)]. Anal. calcd. (%) for $C_{24}H_{23}N_4O_{4.25}Cl_2Cu$: C, 50.57; H, 4.07; N, 9.83. Found: C, 50.45; H, 4.31; N, 9.96.

Structure determination: A single crystal (0.45 mm × 0.07 mm × 0.05 mm) was selected for crystallographic data collection at 293(2)K and structure determinated with graphite-monochromatic MoK α radiation (λ = 0.71073Å). A total of 20453 reflections were collected in the range of 2.20° ≤ 0 ≤ 27.48°, of which 5997 reflections were unique with R_{int} = 0.0337. The final full-matrix least-squares refinement including 336 variable parameters for 5997 reflections with I>2 σ (I) and converged with unweighted and weighted agreement factors of R = 0.0734 and wR = 0.2139, where w = 1/[σ ²(F₀²) + (0.1332P)² + 4.3736P], and P = (F₀² + 2FC²)/3. The maximum and minimum peaks on the final difference Fourier map are corresponding to 0.985 and -0.395e/ų (CCDC No. 646142), respectively.

The atomic coordinates and thermal parameters are given in Table-1 and the selected bond lengths and bond angels are listed in Table-2. The molecular structure of [Cu(Phen)₂Cl]·Cl·3.5H₂O is shown in Fig. 1, in which the center copper(II) ion is five-coordinated in a distorted square pyramidal geometry and the axial position is occupied by one coordinated Cl⁻. Fig. 2 depicts the packing diagram in the unit cell and shows that the moleculars are linked to the neighbours by π - π stacking interactions and form 1D chain-like structure. Many of these chains packed in 2D-supramolecular state by H-bonds.

TABLE -1 ATOMIC COORDINATES (\times 10⁴) AND THERMAL PARAMETERS (\times 10³ Å²)

Atom	X	Y	Z	U(eq)
Cu	2751(1)	1198(1)	3392(1)	51(1)
N(1)	2092(1)	841(1)	2229(5)	54(1)
N(2)	3093(1)	565(1)	4027(4)	49(1)
N(3)	2263(1)	1548(1)	5074(4)	48(1)
N(4)	3379(1)	1561(1)	4697(5)	53(1)
C(1)	1606(2)	983(2)	1301(7)	68(1)
C(3)	1241(2)	263(2)	724(7)	70(1)

TABLE-2 SELECTED BOND DISTANCES (Å) AND ANGLES (°)

Bond	Dist.	Bond	Dist.	Angles	(°)	Angles	(°)
Cu-N(1)	1.984(3)	Cu-Cl(1)	2.3375(12)	N(1)-Cu-N(2)	81.42(13)	N(3)-Cu-Cl(1)	121.64(9)
Cu-N(2)	2.108(3)	N(1)-C(1)	1.319(5)	N(1)-Cu- $N(3)$	95.01(13)	N(3)-Cu-N(2)	122.96(12)
Cu-N(3)	2.097(3)	N(1)-C(12)	1.371(5)	N(1)-Cu-Cl(1)	91.04(11)	N(4)-Cu-N(1)	176.06(14)
Cu-N(4)	1.983(3)	N(2)-C(10)	1.328(5)	N(2)-Cu-Cl(1)	115.35(9)	N(4)-Cu-Cl(1)	92.19(11)

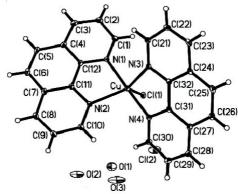


Fig. 1. Structure of the title compound

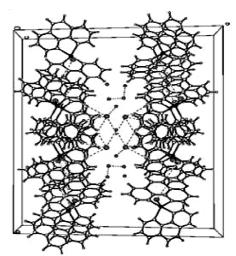


Fig. 2. Molecular packing arrangement

ACKNOWLEDGEMENT

This work is financially supported by the Nature Science Foundation of Anhui Universities (KJ2008A24ZC).

REFERENCES

- Y.L. Liu, J.F. Eubank, A.J. Cairns, J. Eckert, V.C. Kravtsov, R. Luebke and M. Eddaoudi, Angew. Chem. Int. Ed., 46, 3278 (2007).
- 2. O.K. Farha, A.M. Spokoyny, K.L. Mulfort, M.F. Hawthorne, C.A. Mirkin and J.T. Hupp, *J. Am. Chem. Soc.*, **129**, 12680 (2007).
- 3. N.F. Curtis, *Inorg. Chim. Acta*, **317**, 27 (2001).
- 4. J.H. Bi, F.H. Yao, Z.X. Huang, H.L. Wang and N.L. Hu, Asian J. Chem., 19, 5360 (2007).
- J.H. Bi, J.M. Song, Z.X. Huang, Y.H. Wang, L.T. Kong and N.L. Hu, *Asian J. Chem.*, 18, 2365 (2006).
- 6. J.H. Bi, L.T. Kong and Z.X. Huang, Asian J. Chem., 19, 5229 (2007).

(Received: 11 February 2008; Accepted: 21 July 2008) AJC-6730