Asian Journal of Chemistry

Vol. 20, No. 8 (2008), 6618-6620

NOTE

Synthesis and Crystal Structure of a Tetraazamacrocyclic Copper(II) Complex

JIAN-HONG BI*, WEN-BO TAO, ZI-XIANG HUANG[†] and WEN-TAO BI Department of Chemistry, Hefei Teachers College, 327, Jinzhai Street Hefei-230061, Anhui, P.R. China E-mail: hxx010101@126.com

The copper(II) complex $[CuL] \cdot (ClO_4)_2 (L=5,5,7,12,12,14-hexamethyl-1,4,8,11-tetrazamacrocyclotetradecane \cdot 2ClO_4)$ has been synthesized and determined by X-ray diffraction. The crystal is monoclinic, space group P2(1)/n with unit cell parameters: a = 8.463(3)Å, b = 9.178(3)Å, c = 15.567(5)Å. $\alpha = 90^{\circ}$, $\beta = 98.120(4)^{\circ}$, $\gamma = 90^{\circ}$, v = 1197.0(6)Å³, z = 2, Dc = 1.518 Mg/m³, Mr = 546.93, F(000) = 574 and $\mu = 1.183$ mm⁻¹. The final R and wR are 0.0379 and 0.1034, respectively for 2705 observed reflections with I>2 σ (I). The center copper(II) ion is four-coordinated in a slightly distorted square geometry.

Key Words: Tetaraazamacrocycle, Copper(II) complex, Structure.

The azamacrocyclic transition metal complexes have been used successfully for diverse processes such as separation of ions by transport through artificial and natural membranes, liquid-liquid or solid-liquid phase-transfer reactions, preparation of ion-selective electrodes, isotope separations, understanding of some natural processes through mimicry of metalloenzymes, and so on¹⁻⁶.

In this communication, the synthesis and the structure of the complex $[CuL] \cdot (ClO_4)_2$ (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetrazamacro-cyclotetradecane·2ClO₄) were reported.

All reagents were of AR grade and used without further purification. IR spectra was record on a Nexus-870 spectrophotometer. Elemental analyses for C, H and N were performed on a Elementar Vario EL-III analyzer. The crystal structure was determined by Siemens SMART CCD area-detector diffractometer.

Synthesis: 5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetrazamacrocyclotetradecane 2ClO₄ (L) was synthesized according to the literature⁷. A mixture

[†]Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P.R. China.

Vol. 20, No. 8 (2008)

of 25 mL methanol solution of L (10 mmol) were respectively added 25 mL methanol solution of Cu(ClO₄)₂·6H₂O (10 mmol), then refluxed for 1 h. After filtered, the solution was kept at room condition for 6 d and then the blue colour rectangle crystals resulted from it. IR (KBr, v_{max} , cm⁻¹): 1470, 1430 [m, v(C=C)], 1090, 627 [s, v(ClO₄⁻)]. Anal. calcd. (%) for C₁₆H₃₆Cl₂CuN₄O₈: C, 35.19; H, 6.63; N, 10.24. Found: C, 35.24; H, 6.37; N, 10.06.

Structure determination: A single crystal (0.40 mm × 0.30 mm × 0.30 mm) was selected for crystallographic data collection at 293(2)K and structure determinated with graphite-monochromatic MoKα radiation ($\lambda = 0.71073$ Å). A total of 8580 reflections were collected in the range of 3.45 ≤ θ ≤ 27.48°, of which 2705 reflections were unique with R_{int} = 0.0157. The structure was solved by direct methods and expanded using Fourier techniques and SHELXS-97 program system⁸ was used in the solution and refinements of the structure. The final full-matrix least-squares refinement including 142 variable parameters for 5997 reflections with I > 2σ(I) and converged with unweighted and weighted agreement factors of R = 0.0734 and wR = 0.2139, where w = 1/[σ²(F₀²)+(0.0631P)₂ + 0.6705P] and P = (F₀² + 2FC²)/3. The maximum and minimum peaks on the final difference Fourier map are corresponding to 0.471 and -0.351e/Å³ (CCDC No.646137), respectively.

The atomic coordinates and thermal parameters are given in Table-1 and the selected bond lengths and bond angels are in Table-2. The molecular structure of $[CuL] \cdot (ClO_4)_2$ is shown in Fig. 1, in which the center copper(II) ion is four-coordinated in a slightly distorted square geometry. Fig. 2 shows the packing diagram in the unit cell, in which there are positive negative charge interactions between $[CuL]^{2+}$ cation and two perchlorate anions.

Fig. 1. Structure of the title compound

Fig. 2. Molecular packing arrangement

6620 Bi et al.

Asian J. Chem.

TABLE -1	
ATOMIC COORDINATES (× 10 ⁴) AND THERMAL PARAMETERS (× 10 ³ Å ²)	

Atom	Х	Y	Z	U(eq)
Cu	0	5000	5000	27(1)
N(1)	1104(2)	4389(2)	3984(1)	31(1)
N(2)	502(2)	2940(2)	5464(1)	32(1)
C(1)	1422(4)	4458(4)	2410(2)	67(1)
C(2)	453(3)	4979(2)	3108(1)	38(1)
Cl	6278(1)	2808(1)	4567(1)	57(1)
O(1)	7124(6)	1494(4)	4681(4)	192(2)

TABLE-2 SELECTED BOND DISTANCES (Å) AND ANGLES (°)

Bond	Dist.	Bond	Dist.	Angles	(°)	Angles	(°)
Cu-N(1)	2.0263(16)	N(1)-C(2)	1.498(3)	N(1)-Cu-N(1)#1	180.0	N(2)-Cu-N(2)#1	180.00(9)
Cu-N(2)	2.0470(17)	N(2)-C(4)	1.482(3)	N(1)-Cu-N(2)	85.63(7)	C(3)-N(1)-C(2)	112.86(16)
Cu-N(1)#1	2.0263(16)	C(1)-C(2)	1.527(3)	N(1)#1-Cu-N(2)	94.37(7)	C(3)-N(1)-Cu	106.31(12)
Cu-N(2)#1	2.0470(17)	Cl-O(1)	1.401(4)	N(1)-Cu-N(2)#1	94.37(7)	C(3)-N(1)-Cu	106.31(12)

ACKNOWLEDGEMENT

This work is financially supported by the Nature Science Foundation of Anhui Universities (KJ2008A24ZC).

REFERENCES

- 1. P. Caravan, T.J. Ellison, T.J. McMurry and R.B. Laufer, *Chem. Res.*, **99**, 2293 (1999).
- 2. K.L. Zhang, Z. Wang, C.M. Jin and X.Z. You, Transition Met. Chem., 27, 95 (2002).
- 3. N.F. Curtis, Inorg. Chim. Acta, 317, 27 (2001).
- 4. J.H. Bi, J.M. Song, Z.X. Huang, Y.H. Wang, L.T. Kong and N.L. Hu, *Asian J. Chem.*, **18**, 2365 (2006).
- 5. D.F. Cook, N.F. Curtis, O.P. Gladkikh and D.C. Weatherburn, *Inorg. Chim. Acta*, **355**, 15 (2003).
- 6. J.H. Bi, F.X. Xie, X.D. Zhao, Q. Chen, J.D. Xu and S.S. Ni, *Asian J. Chem.*, **16**, 137 (2004).
- 7. N.F. Curtis, J. Chem. Soc., 4409 (1960).
- 8. G.M. Sheldrick, SHELXS-97 and SHELXL-97, University of Gottingen, Germany (1997).

(Received: 11 February 2008; Accepted: 21 July 2008) AJC-6731